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ABSTRACT 

Discrete Element Method (DEM) coupled to 

Computational Fluid Dynamics (CFD-DEM) is a powerful 

tool for optimization and design of particle processes. We 

give an overview of recent developments in the frame of 

the open source CFD-DEM code CFDEMcoupling (2015) 

and the open source DEM code LIGGGHTS (2015). In 

particular, we summarize recent implementations of model 

strategies for resolved CFD-DEM method using immersed 

boundary (IB) techniques for handling solid body motion 

(e.g. rotors) in coupled CFD-DEM simulations. Further 

we show model improvements in handling interpolation 

and averaging correctly and avoiding numerical errors. On 

a more general level, we present a novel parallelization 

approach and present its capabilities for heavily parallel 

computations. These model improvement and 

developments of the CFDEMcoupling (2015) framework 

must be seen in the context of their industrial applicability 

(e.g. food processing, agricultural engineering, 

pharmaceuticals, mining and consumer goods) which is 

the driving force for any of the afore mentioned 

developments. 

NOMENCLATURE 

c damping coefficient (kg/s) 

d diameter (m) 

f explicit momentum exchange coefficient (N/m3) 

F force exerted on a single particle (N) 

g gravity vector (m/s2) 

I identity matrix (-) 

K momentum exchange coefficient (kg/(m3 s)) 

k spring stiffness (N/m) 

m mass (kg) 

N number (cells, particles) (-) 

p pressure (Pa) 

r radius (m) 

R semi-implicit momentum source term (N/m3) 

Re Reynolds number (-) 

T torque (Nm) 

t time (step) (s) 

u  velocity (m/s) 

up relative particle velocity at contact point (m/s) 

V volume (m3) 

x position (m) 

x, y, z Cartesian-coordinates (-) 

x particle overlap at contact point (m) 

 

 volume fraction (-) 

p Poisson ratio (-) 

f bulk viscosity (kg/(m s)) 

c Coulomb friction coefficient (-) 

f gas phase shear viscosity (kg/(m s)) 

 friction coefficient (-),dynamic viscosity (kg/(m s)) 

 density (kg/m3) 

 surface tension (N/m) 

 angular velocity (1/s) 

 

Sub/superscripts 

c contact 

f fluid 

n normal to contact point 

p particle 

t tangential to contact point 

rel relative 

INTRODUCTION 

The coupled CFD-DEM approach described in this paper 

is implemented within an open source environment 

(CFDEMcoupling, 2011), which has seen a steady 

development since its kick-off by Goniva (2009) and 

Kloss (2012). The vision of this development is providing 

a general and versatile toolbox for modelling fluid-

granular systems. Since then an incredible number of 

researchers and engineers all over the world have been 

using and improving this code base. The corresponding 

author’s affiliation (DCS Computing GmbH) was founded 

and gives a professional base for further developments and 

improvements. 

In this paper we address some of the latest improvements 

and development in the CFDEMcoupling framework. For 

sake of completeness we first provide a brief model 

description of the unresolved CFD-DEM method. Then 

we describe a novel approach for moving and rotating 

objects within a CFD simulation using a forcing immersed 

boundary method. We show a validation of this method 

for low Reynolds number flows as well as its combination 

with the unresolved CFD-DEM method. 

Following the idea of implicit-explicit force splitting 

presented recently by Radl et al. (2015) we highlight 

numerical details for calculating momentum exchange 

terms and provide solutions for correcting interpolation 

and averaging errors. 

In a final chapter we briefly show some novel 

developments on efficient parallel data exchange which 

highly influences parallel scalability. 
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MODEL DESCRIPTION 

DEM Method 

The Discrete Element Method was introduced by Cundall 

and Strack (1979). A very brief description of the method 

will be provided in this section. Further details on the 

contact physics and implementation issues are available in 

the literature (e.g. Di Renzo & Di Maio, 2004). 

The strength of the DEM lies in its ability to resolve the 

granular medium at the particle scale, thus allowing for 

realistic contact force chains and giving rise to phenomena 

induced by particle geometry combined with relative 

particle motion, such as particle segregation by 

percolation. Thereby, the DEM is able to capture many 

different physical phenomena, such as dense and dilute 

particulate regimes, rapid- as well as slow granular flow 

and equilibrium states or wave propagation within the 

granular material. 

Thanks to advancing computational power, the DEM has 

become more and more accessible lately. On actual 

desktop computers, simulations of up to a million particles 

can be performed. On very large clusters, the trajectories 

of hundreds of millions of particles can be computed (e.g. 

LAMMPS, 2009). 

Governing Equations 

In the framework of the DEM, all particles in the 

computational domain are tracked in a Lagrangian way, 

explicitly solving each particle’s trajectory, based on the 

force and torque balances: 

p,bp,vp,pp,fp,tp,npp FFFFFFx m   (1) 

and 

p,rp,tp
dt

d
TF Ip  c

p
r

ω
,

      (2) 

where Fp,n is the normal contact force, Fp,t is the tangential 

contact force. Fp,f is the drag force exerted from the fluid 

phase to the particles, Fp,p and Fp,v denote respectively the 

pressure and viscous force acting on the particles. Other 

body forces like gravity, electrostatic or magnetic forces 

are lumped into Fp,b For sake of completeness, these forces 

are described in detail in Table 1. 

Each physical particle is mathematically represented by a 

sphere, another geometrically well-defined volume or a 

combination of them. The translational and angular 

accelerations of a sphere are based on the corresponding 

momentum balances. Generally, the particles are allowed 

to overlap slightly. The normal force tending to repulse 

the particles can then be deduced from this spatial overlap 

xp and the normal relative velocity at the contact point, 

up,n. The simplest example is a linear spring-dashpot 

model, shown in Fig. 1. 

An efficient way of taking into account the small-scale 

non-sphericity of the particles is a rolling friction model, 

see Goniva et al. (2012). It introduces an additional torque 

also for collisions, where the relative velocity at the 

contact point is zero. Within this paper a directional 

constant torque model (Ai et al., 2011), is applied (see 

Tab. 1). 
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Fp,ν    pV  

Fp,f  FD*  ___________________________________________________________________________________ 
*Drag force FD is explained in Goniva et al. (2012) 

Table 1: Components of forces and torques acting on 

particle p. 

 

 
Figure 1 Spring-dashpot model. 

 

CFD-DEM Method 

For the modelling of particle laden fluid flow, especially 

for dense particle flow close to packing limit a coupled 

CFD-DEM approach (Tsuji et al. (1993), Zhou et al. 

(2010)) is well suited. 

Governing Equations 

The motion of a fluid phase in the presence of a secondary 

particulate phase is governed by the volume-averaged 

Navier-Stokes Equations for compressible fluid, which 

can be written as: 

 
  0




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,     (3) 
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Here, αf is the volume fraction occupied by the fluid, ρf is 

its density, uf its velocity, and τf is the stress tensor for the 

fluid phase. Rf,p represents the semi-implicit momentum 

exchange with the particulate phase, which is calculated 

for each cell, where it is assembled from the particle based 

drag forces. f represents the explicit momentum exchange 

term.  

For solving the above equations a pressure based solver 

using “Pressure-Implicit Split-Operator” (PISO) pressure-

velocity coupling is used, where an implicit momentum 

predictor followed by a series of pressure solutions and 

explicit velocity corrections is performed (Jasak, 1996). 
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CFD-DEM coupling routine 

The coupling routine consists of several steps: 

(1) The DEM solver calculates the particle positions 

and velocities. 

(2) The particle positions, velocities, and other 

necessary data are passed to the CFD solver. 

(3) For each particle, the corresponding cell in the 

CFD mesh is determined. 

(4) For each cell, the particle volume fraction as well 

as a mean particle velocity is determined. 

(5) Based on the particle volume fraction, the fluid 

forces acting on each particle are calculated. 

(6) Particle-fluid momentum exchange terms are 

assembled from particle based forces by ensemble 

averaging over all particles in a CFD cell. 

(7) The fluid forces acting on each particle are sent to 

the DEM solver and used within the next time 

step. 

(8) The CFD solver calculates the fluid velocity 

taking into account local particle volume fraction 

and momentum exchange of the granular phase. 

(9) Additional equations such as species 

concentration can optionally be evaluated. 

(10) The routine is repeated from (1). 

Fluid-Particle momentum exchange 

Once the particle volume fraction is calculated it is 

possible to evaluate each particle’s contribution to 

particle-fluid momentum exchange, which is mostly 

established by means of a drag force depending on the 

local particle volume fraction. 

For numerical reasons the momentum exchange term is 

split-up into an implicit and an explicit term using the cell-

based ensemble averaged particle velocity ‹up›: 

pf,pff,pf,p uKuKR  ,      (5) 

where 

pfcell

i

p,f

f,p
V uu 



F

K ,      (6) 

 

For the calculation of Kf,p many different drag correlations 

have been proposed during the recent years (e.g. Zhu et al. 

(2007)). Within this paper a drag relation based on lattice 

Boltzmann simulations proposed by Koch and Hill (2001) 

is used, see Goniva et al. (2012). 

Coupled CFD-DEM solver 

The CFD part of the simulations is realized by a solver 

realised using the open source framework of 

OpenFOAM® (OpenFOAM, 2015). The coupling 

routines are collected in a separate library of > 10k LOC 

providing a modular framework for CFD-DEM coupling. 

The DEM part of the simulations is conducted in 

LIGGGHTS, an open source software package for 

modelling granular material by means of the Discrete 

Element Method (LIGGGHTS, 2015). based on 

LAMMPS, an open source Molecular Dynamics code by 

Sandia National Laboratories for massively parallel 

computing on distributed memory machines (Plimpton, 

1995). 

Both LIGGGHTS and CFDEMcoupling run in parallel 

using message-passing techniques (MPI) and a spatial-

decomposition of the simulation domain. LIGGGHTS and 

CFDEMcoupling are distributed as open source codes 

under the terms of the GNU General Public License 

(GPL). A selection of coupling routines as well as 

example solvers are provided at a dedicated web page 

maintained by DCS Computing GmbH. 

Novel Immersed Boundary CFD Method 

Recently described by Hager et al. (2014) an immersed 

boundary method has been developed within the 

CFDEMcoupling framework (“cfdemSolverIB”) following 

the approach of Shirgaonkar et al. (2009). The particle 

dynamics is modelled using the DEM method, the particle 

positions, velocities and sizes are transferred to the CFD 

solver which then uses an immersed boundary method to 

calculate the flow field around the particles. While this 

method has proven its capability to predict flows of 

moderate Reynolds number, it fails for low Reynolds 

number flows. 

Very recently an improved immersed boundary method 

has therefore been developed by Blais et al. (2015) and 

implemented in the CFDEMcoupling framework 

(“cfdemSolverForceIB”). This novel scheme makes use of 

the intrinsic cycling within the PISO loop to iterate on the 

continuous forcing term added to the momentum equation 

to take into account the immersed body and its motion. 

Blais et al. could show second order convergence of the 

method in case of a “body-conformal” mesh. For a non-

conformal mesh the order of convergence reduces to 1.33. 

Immersed Boundary Validation Case 

Within this publication we compare the performance of 

the old and new immersed boundary implementation for 

low Reynolds number flows. Therefore we consider the 

flow around a sphere at a Reynolds number of 1. The 

sphere is positioned in the centre a cubic simulation 

domain of 10x10x10 diameters, meshed with 20x20x20 

cells. The simulation result is validated against analytic 

solution of the flow past a sphere for Stokes flow: 

    

  rr
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r

R
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







3
4

4

3

3

3
,   (7) 

where R is the sphere radius, 
u is the far field velocity 

vector, r is the radial coordinate and e the unit vector of 

the coordinate system as show in Fig. 1. 

 

Figure 1: Stokes flow around sphere. 

 

In order to increase the spatial mesh resolution at the 

surface of the sphere a dynamic meshing routine was 

applied leading to a maximum refinement factor of 3 at the 

sphere surface. In Fig. 2 the velocity profiles in span-wise 

direction (i.e. phi=90°) of flow past a sphere at Re=1 are 

depicted. The simulation results for “cfdemSolverIB” and 

“cfdemSolverForceIB” are compared to the analytical 

solution for Stokes flow (Eqn. 7) and the analytical 
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solution for Potential flow around a sphere. It can clearly 

be seen that the new forcing based immersed boundary 

method is able to nicely predict the flow close the sphere 

surface. The old method fails to predict zero velocity at 

the sphere position and predicts a solution similar to 

potential flow solution. 

 
Figure 2: Flow profile in span-wise direction of flow past 

a sphere at Re=1. Comparison of “cfdemSolverIB” (Hager 

et. Al. 2014) and “cfdemSolverForceIB” (Blais et al. 

2015) with the analytic solution for Stokes flow. 

 

In Fig. 3 the contour of the velocity magnitude ranging 

from 0 to 1 
u ,which is in positive x direction, are 

shown. 

 
Figure 3: Contour of the velocity magnitude (m/s) in a 

slice through the sphere, flow from left to right in positive 

x-direction. 

Immersed Boundary CFD-DEM Method 

Combining the forcing immersed boundary method and 

unresolved CFD-DEM method we created a model for 

complex rigid body motion (e.g. stirrers) in a particle-fluid 

suspension. As described in more detail by Blais et al. 

(2015), rotating and moving solid parts are resolved by the 

forcing immersed boundary method in the CFD domain as 

well as by moving surfaces in the DEM domain. Particles 

are modelled with classical unresolved CFD-DEM 

method. Compared to modelling rotating and moving parts 

by mesh motion or mesh deformation this new method can 

model multiples solid objects for which the swept volumes 

overlap. 

Immersed Boundary CFD-DEM Validation Case 

As a validation case of this solver we present compare the 

particle motion in a Taylor-Couette flow at Reynolds 

number 0.7. The setup consists of a rotating inner cylinder 

and a fixed outer cylinder depicted in Fig. 4. The 

geometrical scales and boundary conditions are listed in 

Tab. 2. _________________________________________ 
Property Value ___________________________________________________________________________________ 

dinner   0.0128 m 

douter   0.0476 m 

dParticle   0.001 m 

    0.001 m2/s 

    1000 kg/m3 

Particle   2000 kg/m3 

    60 rpm 

nCells   2000 (pseudo 2D)  ___________________________________________________________________________________ 
Table 2: Boundary conditions for Taylor-Couette case. 

 

Figure 4: Sketch of geometry setup of Taylor-Couette 

flow. 

 

Due to the low particle Stokes number it can be assumed 

that the particle has to follow the fluid flow exactly. As a 

consequence we can compare the analytic solution for the 

fluid flow and the particle motion. In Fig. 5 we see that the 

particle and flow velocity compare very well, which leads 

to the conclusion that the forcing immersed boundary 

method correctly predicts the fluid flow and that the 

particle trajectory calculation is stable and accurate 

enough. Especially the fact that the cells are not aligned 

with the flow (Fig. 6) direction is demanding for the 

numerical accuracy. 

 

Figure 5: Velocity components of a fine particle in 

Taylor-Couette flow at Re=0.885 compared to the 

analytical flow solution. 
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Figure 6: Velocity contour (m/s) and mesh resolution of 

the Taylor-Couette setup. 

Correction Numerical Errors in Unresolved CFD-DEM 

Correction of Particle Velocity Averaging Error 

When calculating the momentum exchange between 

particle and fluid phase for unresolved CFD-DEM, the 

Eqs. 5 and 6 are solved. F,f,p is the drag force of each 

single particle: 

 pf

p

p

p,f

V
uu 




F         (8) 

, where β is a force coefficient according to a suitable drag 

calculation (see Zhu et al. (2007)). The interested reader 

now sees that in the Eqs. 5, 6 and 8 there is a discrepancy 

between the use of relative particle velocity  pf uu   

and the ensemble averaged relative particle 

velocity  pf uu  . This discrepancy causes an error 

and leads to reduced stability of the simulation. In order to 

correct that we can define the error for each particle: 

 ppp uuu '         (9) 

As recently described by Radl et al. (2015) the force-

splitting into implicit and explicit part can dramatically 

increase the numerical stability of coupled CFD-DEM 

simulations. In this paper we use the force-splitting for 

error correction: 

The semi-implicit contribution of the drag force is 

calculated as 

 '

ppf

p

pV
uuu 




        (10) 

And an explicit error correction is applied 

'

p

p

pV
u




         (11) 

As a consequence, Kf,p is formed completely using 

 pf uu   and the sum of the explicit and semi-

implicit source term give the desired drag force 

 
pf

p

pV
uu 




. 

Correction of Fluid Velocity Interpolation Error 

Without doubt it is desired to use the fluid velocity 

interpolated to the particle centre int,fu  when calculating 

the particle drag force (Eqn. 8), in order to avoid 

unphysical formation of clusters and shear bands at cell 

borders. Eqn. 8 can then be re-written as 

 pf

p

p

p,f

V
uu  int,




F . 

Similar to the previously described particle velocity 

averaging error, the discrepancy in using int,fu  for 

particle force calculation and the cell centred fluid 

velocity
fu  for the calculation of K,f,p leads to an error 

which needs to be corrected. 

We can define an error for each particle: 

 
fff uuu  int,

'
        (12) 

We can now calculate the semi-implicit contribution of the 

drag force as 

 '

fpf

p

pV
uuu 




        (13) 

And an explicit error correction 

'

f

p

pV
u




         (14) 

As a consequence, Kf,p is formed completely using 

 pf uu   and the sum of the explicit and semi-implicit 

source term give the desired drag force 

 
pf

p

pV
uu int,




. 

Effect of Interpolation Error Correction 

The consequence and necessity of correcting the error 

induced by fluid velocity interpolation when calculating 

the drag force is demonstrated for the onset of fluidization 

of a particle bed. It should be mentioned that for this 

specific case it is not to be expected that interpolation 

changes the result significantly as velocity gradients are 

not dominating the flow behaviour. Any influence of 

interpolation can therefore be interpreted as numerical 

error. 

 

In Fig. 7 the test setup is depicted. In a cylindrical tube a 

fluid flows in in counter-gravity direction through particle 

bed which is initially at rest. The flow velocity is slowly 

increased, which leads to an increasing pressure drop over 

the packing. When the minimum fluidization velocity is 

reached, the particles start lifting which leads to decreased 

packing density and the pressure drop remains almost 

constant. 
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Figure 7: Sketch of geometry setup of minimum 

fluidization test setup. 

In Tab 3 we see a collection of the boundary conditions 

and properties. _________________________________________ 
Property Value ___________________________________________________________________________________ 

rtube   0.0138 m 

htube   0.0053 m 

dParticle   0.001 m 

    0.00015 m2/s 

    10 kg/m3 

Particle   2000 kg/m3 

uin    0-0.02 m/s 

nCells   4608 

nParticles   10000  ___________________________________________________________________________________ 
Table 3: Properties and boundary conditions of the 

minimum fluidization test setup. 

In Fig. 8 we see the pressure drop over the particle 

packing over the inlet velocity in comparison to the 

analytic solution provided by the well-established and 

generally applicable Ergun equation and pressure drop at 

minimum fluidization velocity where particle mass and 

pressure drop must be balanced. It can be seen that the 

pressure signal becomes very noisy when using the 

interpolated fluid velocity int,fu for particle drag 

calculation. This clearly shows the effect of using 

interpolation for drag force calculation. 

 

Figure 8: Comparison of pressure drop signal for using 

either 
fu  (black line) or int,fu  (red line) for particle 

drag calculation. 

 

In a next step we show how the interpolation error can be 

corrected efficiently by using the correction velocity 
'

fu . 

Fig. 9 shows that the pressure drop signal with and 

without interpolation almost match if the correction is 

applied.  

 

Figure 9: Comparison of pressure drop signal for using 

either 
fu  (black line) or int,fu and the error correction 

(green line) for particle drag calculation. 

Efficient Communication Scheme 

In coupled CFD-DEM simulations, the communication of 

data between the CFD solver and the DEM solver is 

crucial part, especially when using different codes for 

DEM and CFD. This communication can dominate the 

simulation time and can become the limiting factor for 

parallel code scalability for high parallelization (> 64 

cores). 

In the most general approach is to exchange all particles’ 

data (velocity, position and radius) to the CFD solver and 

send back all particles’ drag forces. This approach is 

known as “all-to-all” communication. This approach is 

simple to implement but produces increasing 

communication overhead with increasing number of cores. 

In this paper we present an alternative code-coupling 

scheme for heterogenious domain decomposition (many-

to-many). Equal to the all-to-all scheme it allows for a 

different domain decomposition for the CFD and the DEM 

domain of a coupled CFD-DEM simulation and therefore 

allows for dynamic load balancing of either of the solvers 

or different domain sizes. 

For the many-to-many scheme the single DEM and CFD 

processes directly communicate and exchange their data. 

The communication follows a “communication map” 

which is built and maintained depending on the actual 

position of each particle. 

Testing Parallel Scalability 

To test the communication scheme a packed bed 

consisting of a block 10.24 x 0.002 x 0.1 m and 10240 x 2 

x 100 cells was filled with particles of dP = 0.3 mm. The 

total particle number was nP=20.48e6. A schematic 

description of the setup is shown in Fig. 10. 

 

Figure 10: Rectangular packed bed with domain 

decomposition. 
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In Fig. 11 the parallel scalability of the system on 8-512 

cores is plotted over the number of cores. We see that up 

to 512 cores the global simulation time decreases over-

linearly. The effect of “better than ideal” performance is 

well known from CFD simulations and is caused by cache 

demands of large simulations and therefore “not-ideal” 

performance of low parallelized cases. 

 

Figure 11: Parallel scalability of the overall simulation 

time of the new code-coupling scheme. 

CONCLUSION 

We presented the validation of a novel IB method in the 

CFDEMcoupling (2015) which allows the combination of 

IB and CFD-DEM. Further we showed the increase of 

numerical stability by correction of numerical errors due 

to interpolation and averaging during particle drag force 

calculation. Finally we briefly described a novel code 

communication scheme for CFD-DEM simulations 

leading to excellent code scalability up to 512 cores. 
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