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ABSTRACT 

A healthy indoor air environment is essential to maintain 

the comfort, health and productivity of the occupants. 

Governed by the law and regulations, building owners and 

operators are obligated to provide a safe workplace 

environment for employees, tenants, and visitors. 

Nevertheless, with the soaring energy price over decades, 

the operation cost of heating and ventilation systems is 

becoming more and more expensive. It has become a huge 

challenge for engineers to design an optimal system 

maintaining the desired thermal comfort with minimum 

cost. Aiming to resolve the problem, a number of 

numerical and experimental works have been carried out 

to develop a design optimization methodology. Most of 

the previous studies concentrated mainly on single 

objective optimization which aggregated all design indices 

using artificial weighting factors. The optimal solution, 

however, is sensitive to the value of weighing factors. This 

paper reports some preliminary results of the development 

of a multi-objective design optimization platform for 

heating and ventilation applications. The algorithm is 

developed based on the Nondominated Sorting-based 

Multi-objective Particle Swarm Optimization (NSM-PSO) 

technique where optimization is carried based on validated 

CFD predictions. NSM-PSO is an expansion of the basic 

PSO to achieve more effective nondominated comparisons 

through a better use of particle’s personal best and its 

offspring. The supply air temperature and velocity are the 

design parameters selected to optimize against the 

predicted mean vote (PMV), CO2 concentration and 

energy consumption as objective functions. The results 

show that the optimal design temperature ranges from 

290.15K to 294.15K, and the velocity ranges between 

0.15m/s and 0.44m/s where a Pareto-optimal front is given 

within this range. Based on the given Pareto-optimal front, 

designers could then choose the optimal design that is 

well-balanced between thermal comfort, air quality and 

energy consumption, according to their professional 

judgments or end-user preferences. 

NOMENCLATURE 

T temperature 

P air pressure 

m mass 

cp specific heat capacity 

h specific enthalpy 

INTRODUCTION 

In recent years, benefit from the rapid development of 

computational technology, numerical methods (such as 

Finite Volume Method and Finite Element Method) have 

attracted significant attention in literature. Computational 

Fluid Dynamics (CFD), as a kind of Finite Volume 

Analysis Method, has been widely used among researchers 

and engineers working on heating, ventilation and air-

conditioning (HVAC) system (Stavrakakis et al. 2010, 

Fong et al. 2006, Stavrakakis et al. 2011, Fong et al. 2009, 

Chen et al. 2010). Lately, some researchers proposed to 

use a validated CFD model as a reliable tool to predict the 

performance (such as air temperature, air velocity, air flow 

pattern, etc.) of the HVAC system. The CFD predictions 

are then coupled with some evolutionary algorithms (EA) 

to search for the optimal design parameters (Fong et al. 

2006, Zhai et al. 2014, Zhou and Haghighat 2009a, Li et 

al. 2013, Zhou and Haghighat 2009b). This kind of 

methodology is often referred as the CFD-EA coupling 

approach. 

In general, the HVAC system design is a multi-objective 

optimization problem, where the objectives are generally 

conflictive with each other and there exist multiple trade-

off solutions. In most of the previous research works, the 

multiple design indices were blended into a single 

objective problem using artificial aggregating or weighting 

factors given by the generic form: 

1 1 2 2min (x) (x) (x) (x)n nf f f f            (1) 

where ω1…n are the aggregating/weighting factors. This is 

an easy implement and high efficient optimization 

structure, however, the optimal design could be critically 

sensitive to the weighting factors. The designer must have 

sufficient professional knowledge deciding the weighting 

factors to make sure the result is the expected one. 

Moreover, this method of handling multi-objective gives 

only one of all the trade-off solutions dominated by the 

weighting factors, which means there is no alternative 

solution to be provided to the designer. In attempting to 

overcome the aforementioned shortcoming, in this study, 

we propose the use of a nondominated sorting-based 

multi-objective particle swarm optimization (NSM-PSO) 

algorithm to achieve multi-objective optimization without 

any weighting factors. This population-based algorithm, as 

an improved technique of the basic particle swarm 

optimization (PSO), can give a group of nondominated 

(i.e. non-biased) solutions, providing the engineers 

multiple options from which they can select the most 
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appropriate design according to professional judgment or 

end-user preference (Carrese et al. 2011). 

This paper presents some preliminary results on the 

development of a multi-objective optimization algorithm 

which could be integrated into generic CFD packages. In 

this paper, a three-dimensional domain of a typical office 

room was built to simulate a HVAC system. The 

temperature and velocity of the supply air (the two critical 

design variables) were selected for assessment and 

optimization. The system performance will be evaluated 

against in terms of thermal comfort, indoor air quality 

(IAQ) and energy consumption. The predicted mean vote 

(PMV), CO2 concentration and energy consumption are 

therefore selected as objective functions. The NSM-PSO 

is performed to handle the multi-objective optimal design 

problem. Compared to the traditional weighting method 

where only one point can be located on the Pareto Front, 

the NSM-PSO is capable of finding a host of points which 

are well distributed on the Pareto Front, and providing 

designers more flexibility of choosing their favorite 

solutions. 

CFD-EA COUPLING TECHNIQUES 

In the literature, the CFD-EA coupling technique has been 

adopted as a feasible method in engineering optimization 

problem (Carrese et al. 2012, Zhou and Haghighat 2009a, 

Li et al. 2013, Zhou and Haghighat 2009b). The procedure 

of this kind of method is described as the following. 

Firstly, a validated CFD model is needed to predict the 

output (i.e. objectives) regarding to different input 

parameters. Secondly, after collecting sufficient dada from 

CFD, some interpolation methods (such as Kriging 

Interpolation, Artificial Neural Network and Linear 

Interpolation) are used to get a response surface in a 

continuous space. Finally, evolutionary algorithms like 

genetic algorithm (GA) and PSO can be used to search for 

best design corresponding to the selected objectives. 

Compared to conventional design cycle, this numerical 

simulation-based methods offer a faster and more 

economical way for engineers to assess or predict the 

design performance and its relationship to different design 

parameters.  

A schematic of the overall methodology is depicted in 

Figure 1. In this paper, a generic CFD framework 

(ANSYS CFX V14.5) has been adopted as a reliable 

predictive tool to construct the input-output data space and 

predictions of the CFD model were validated against full-

scale experimental data by Yuan et al. (1999). After 

validation, simulations with different controlled variables 

(i.e. inlet temperature and velocity) were performed to 

obtain the corresponding system performance for the 

output space (i.e. PMV, CO2 concentration, energy 

consumption). The output space was then passed into the 

NSM-PSO to perform iterative optimization processes for 

searching the Pareto Front (i.e. optimal trade-off 

solutions). Multi-dimensional interpolation is applied to 

calculate fitness value of particles. A brief descriptions of 

the adopted NSM-PSO is presented in the following. 

Basic PSO 

Firstly introduced by (Kennedy 2001), the particle swarm 

optimization (PSO) has been widely adopted as a 

population-based stochastic optimization method. The 

basic PSO is inspired by observing social behaviors of 

ants which include learning from the previous experience 

and communicating with successful individuals. In the 

PSO algorithm, each particle has its own position and 

velocity, which are represented by xi and vi, respectively 

and they are updated according to the following equations: 

1 1 2 2(t 1) (t) ( (t)) ( (t))

(t 1) (t) (t 1)

i i i i g i

i i i

v v c p x c p x

x x v

       

   

     (2) 

where pi and pg represent the personal best position and 

global best position, respectively, and c1 and c2 are two 

uniform random numbers within the range [0, 1]. The φ1 

and φ2 are two constants which are set to 2. The parameter 

ω decreases with the increasing iteration number while 

within the range [1.2, 0.4]. Unfortunately, the original 

architecture of the PSO is only capable to solve single-

objective optimization problem. 
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Figure 1: System framework of CFD-EA coupling 

technique. 

Nondominated Sorting-based PSO 

In order to enable the basic PSO to solve multi-objective 

optimization problem, Li (Li 2003) applied a 

Nondominated Sorting Method (NSM) to the original 

PSO inspired by (Deb et al. 2002). In NSM-PSO, the 

updating equations for particle position and velocity do 

not change, but the selection methods of personal best and 

global best are different. Nondominated comparison 

between particles’ personal bests and their offspring is 

used to decide the new personal bests. Nondominated 

sorting is carried out in a temporary population which 

consists of N particles’ personal bests and N their 

offspring (therefore 2N individuals) to decide the 

nondomination rank of each individual. Then the global 

best is selected from the group which has top 

nondomination rank and in order to avoid local optimal 

aggregation, crowding distance is calculated and sorted. 

Therefore, the global best must meet both the following 

requirements: top nondomination rank and largest 

crowding distance. Throughout the iteration process, the 

particles are moving towards the Pareto-optimal Front 

guided by the leader (global best) and are well distributed 

because of population diversity maintenance (crowding 

distance). 
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MODEL DESCRIPTION 

In order to study the aforementioned HVAC system design 

optimization, a three-dimensional computational domain 

representing a typical office room was constructed. Figure 

2 shows the geometry layout of the computational domain 

and Figure 3 gives the mesh distribution of the 

computational model. A total of 2,849,852 elements and 

1,043,811 nodes were generated throughout the whole 

domain. The conditioned air flows from the supply air unit 

at the right and leaves the room from the exhaust at the 

center of the roof. Details of the boundary conditions are 

listed in Table 1. Table 2 gives the geometry dimensions 

of the objects in the room. It should be noted that the 

temperature and velocity of the inlet are controlled 

variables and other boundary conditions are fixed for all 

simulations. 

 

Figure 2: The geometry layout of the typical office room. 

 

Figure 3: Mesh distribution of the CFD model. 

Number Name Boundary details Comments 

1 
Supply air 

unit 

Normal speed & 

Static temperature 

Controlled 

variables 

2 Exhaust Average static pressure 0[Pa] 

3,4 Occupant Temperature 37[C] 

5,6 Desktop Heat flux 108.5[W/m2] 

7,8 Table Adiabatic ------- 

9 Partition 

window 

Heat transfer coefficient 3.7[W/(m2K)] 

10,11 Furniture Adiabatic ------- 

12-17 Light Heat flux 34[W/m2] 

 Room wall Heat transfer coefficient 0.19[W/(m2K)] 

Table 1: The boundary conditions. 

CFD MODEL VALIDATION 

To ensure the validity of the CFD simulation, predictions 

of the CFD model were  first validated against the full-

scale experimental data reported by (Yuan et al. 1999). 

Figure 4 shows the comparisons between the measured 

and predicted air temperature and velocity along a vertical 

line at the center of the office room under the inlet 

condition (17[C], 0.09[m/s]). The blue lines are the results 

extracted from the CFD simulation and the red dots are the 

experimental data report by (Yuan et al. 1999). As 

depicted, the predicted temperature and velocity are in 

satisfactory agreement with the experimental 

measurements; showing that the CFD predictions are 

reliable for design optimization. 

Number Name Length(m) Width(m) Height(m) 

1 
Supply air 

unit 
0.28 0.53 1.11 

2 Exhaust 0.43 0.43 ----- 

3,4 Occupant 0.4 0.35 1.1 

5,6 Desktop 0.4 0.4 0.4 

7,8 Table 2.23 0.75 0.01 

9 Partition 

window 

----- 3.35 1.16 

10,11 Furniture 0.95 0.58 1.24 

12-17 Light 0.2 1.2 0.15 

 Room 5.16 3.65 2.43 

Table 2: The geometry dimensions of CFD model. 

 

 

Figure 4: Comparisons between the CFD results and 

experimental data. 

ASSESSMENT INDICES 

PMV for thermal comfort assessment 

The predicted mean vote (PMV) is a thermal comfort 

evaluation index which was firstly introduced by (Fanger 

1972). This value represents the subjective mean 

satisfaction with the indoor thermal environment with a 

number between -3 (cold) and +3 (hot). Zero is defined as 

the ideal value representing thermal neutrality and our 

objective is to make |PMV| as small as possible. Fanger’s 

equations are used to calculate the PMV with a particular 

combination of air temperature, mean radiant temperature, 

relative humidity, air speed, metabolic rate, and clothing 

insulation (Fanger 1972). In this paper, we evaluated the 

average PMV based on the predicted field information 

obtained from CFD simulations. 
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CO2 Concentration for IAQ assessment 

To assess the air quality within the space, the 

concentration of CO2 emitted by occupants throughout the 

office room was also resolved in the CFD simulation. In 
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the simulation, the CO2 is emitted from the occupants with 

the velocity and concentration of 0.018m/s and 4.0ppm 

respectively. Similar to the average PMV, the average CO2 

concentration was extracted from the predicted CFD field 

information. 

Energy Consumption for ventilation 

The energy costs of air-conditioning can be divided into 

two parts: ventilation fan power and cooling/heating 

energy consumption (Li et al. 2013). These two parts and 

total energy costs can be determined by the following 

equations: 

/ ( )

( )

air
fan

fan

cooling heating supply p return supply

outdoor outdoor return

P V
E

E m c T T

m h h






 

 

               (3) 

where P is air pressure difference of the fan and V is 

volume flow rate of supply air (m^3/s), m represents the 

mass flow rate of the air (kg/s), cp is the specific heat 

capacity of air, T represents temperature, h is the specific 

enthalpy of air (J/kg) which is related to air temperature 

and relative humidity. Similarly, we can get energy costs 

from the CFD-Post package. 

SIMULATION RESULTS AND ANALYSIS 

CFD simulation results 

To obtain sufficient sample data, a total 25 simulations 

with different combinations of controlled variables 

(temperature and velocity of inlet) were carried out (see 

Figure 5). In this study, the commercial CFD package – 

ANSYS CFX 14.5 was adopted to simulate air flow and 

heat transfer within the typical office room. Figure 6 and 7 

show the temperature contour and velocity vector, 

respectively, on the middle plane under the inlet condition 

(17[C], 0.1[m/s]). Afterwards, the validated CFD model 

was then applied to predict the response surface of the 

system performance (i.e. PMV, CO2 and energy) with 

respect to different design parameters (i.e. supply air 

temperature and velocity). The corresponding response 

surfaces are shown in Figure 8. 

 

 

Figure 5: Definition of controlled-variable combinations 

for CFD simulaitons. 

 

Figure 6: Temperature contour on the middle plane at 

(17C, 0.1m/s).. 

 

Figure 7: Velocity vector on the middle plane at (17C, 

0.1m/s). 

 

 

 

Figure 8: Response surfaces of the three objectives (PMV, 

energy, CO2). 

Optimization results 

For comparison, two methods of optimization were used 

in the present study. Method one adopts similar approach 
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from previous literature using weighting factors to 

construct a single objective function. Method two adopts 

the proposed NSM-PSO to find multiple equally good and 

well-distributed solutions. 

(a) Weighting method 

In this optimization process, two objectives (i.e. PMV and 

energy consumption) are selected to construct the 

objective function, given by: 

 

1 2PMV Energyf f f                           (4) 

 

where ω1 and ω2 are the weighting parameters which 

decide the optimization results. Table 3 shows the impact 

of weighting factors on the optimal results and Figure 9 

shows a comparison of PMV contour between the 

Baseline case (17[C], 0.1[m/s]) and the improved Case 2 

(20.6[C], 0.17[m/s]). 

 

 

Figure 9: Comparisons of PMV contour between baseline 

case (upper) and case 2 (lower). 

Variables 
Baseline 

case 
Case 1 Case 2 

Weights ----- [0.5,1] [1,1] 

Tin [C] 17.0 20.7 20.6 

Vin [m/s] 0.10 0.14 0.17 

PMV 0.27 0.18(33%) 0.05(81%) 

Energy [W] 624.5 480.2(23%) 624.7(0%) 

Table 3: Optimization results with different weighting 

factors. 

From the Case 1 in Table 3, it can be observed that both 

the thermal comfort and energy consumption are improved 

in comparison to the baseline case (i.e. 33% and 23%, 

respectively). By comparing the Case 1 and Case 2, by 

reducing the weighing factor for energy, a higher (i.e. 

81%) thermal comfort improvement could be achieved. 

Therefore, we can conclude that the results are sensitive to 

weighting factors and this method can only output one 

solution in each run. Moreover, because different 

designers would have different preferences, it is difficult 

to fix the weighting factors in advance and only giving one 

solution per run provides no flexibility of choosing 

alternative trade-off solutions. 

 

 

 

 

Figure 10: Nondominated solutions given by the NSM-

PSO. 

(b) Nondominated sorting method 

To remedy the drawback of Method one, the NSM-PSO is 

a weighting factor free optimization procedure, and 

multiple trade-off solutions can be provided in one run. In 

this paper, the iteration number is set to be 100 and the 

(a) 

(b) 

(c) 

(d) 
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nondominated solutions by NSM-PSO method are shown 

in Figure 10, where each of the blue dot represents a 

solution in the objective space. Figures 10(a~c) indicate 

the nondominated solutions of 2-objective provided by the 

NSM-PSO (PMV-Energy, CO2-Energy and CO2-PMV, 

respectively), and Figure 10(d) shows the nondominated 

solutions of a 3-objective problem considering all the 

three objectives (PMV-Energy-CO2). Obviously, the 

NSM-PSO could provide multiple nondominated 

solutions (i.e. improvement in terms of one objective 

comes from a sacrifice on at least one of other objectives), 

providing designers with flexibility of choosing alternative 

solutions which are equally good. After getting the 

optimal Pareto front, engineers can select one set of design 

parameter from the front according to their professional 

judgments or end-user preferences. 

CONCLUSION 

This paper presents some preliminary research work on 

the development of a multi-objective optimization 

algorithm which is tailored to be integrated with generic 

CFD packages. Different other previous studies in the 

literature, we proposed a weighting factor free algorithm – 

NSM-PSO to handle the multi-objective optimization 

problem. The advantage of the method is able to provide 

multiple trade-off solutions (i.e. Pareto Front) in one 

simulation run. With the visualization of solutions in 

objective space, designers could easily pick up the most 

appropriate one according to their professional judgments 

or end-user preferences, rather than being struggled to 

decide the value of weighting factor in advance using the 

traditional method. Furthermore, the CFD-NSMPSO 

coupling method also provides engineers more flexibility 

of choosing alternative solutions in only one simulation 

run. In this paper, a commercial software – ANSYS CFX 

was adopted as a CFD tool to predict the air flow and heat 

transfer in a typical occupied office room and MATLAB 

was used as an interpolation tool to generate the objective 

response surface. NSM-PSO algorithm was coded in 

MATLAB to search optimal design parameters. The 

results show that the combination of CFD and NSM-PSO 

is a feasible and promising method for multi-objective 

engineering optimization design. 
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