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ABSTRACT 

The aim of this paper is to quantify frictional attenuation 

associated with local flows induced by seismic waves in a 

fluid-saturated porous rock. The porous rock matrix is 

represented by a digitized core sample image. A 

characteristics of local flow attenuation mechanisms is that 

the dissipation occurs in the fluid phase due to internal 

friction. Therefore, it should be possible to quantify wave 

attenuation by summing up the dissipation in the fluid 

phase over the course of a wave cycle. This paper is split 

into two steps. First, pore-scale flow simulations in the 

laminar flow regime have been performed. The prescribed 

fluid velocity at the inlet is oscillating, thereby resembling 

the effect of wave-induced flow. In this approximation the 

rock matrix is not deforming. A connection with wave 

attenuation has been made by computing the Rayleigh 

dissipation function for different frequencies. Second, the 

workflow has been extended such that solid deformation 

can be coupled to the fluid motion. Thus, the solutions are 

two-way coupled. This means that information from the 

flow field and solid matrix are exchanged through the 

fluid-structure interface (FSI). To demonstrate this 

numerical capability a simultaneous flow and deformation 

simulation for a digitized rock image has been performed.  

NOMENCLATURE 

 E  Rayleigh dissipation function (W)  

 E  peak strain energy (J) 

  F external body force (N) 

  I Identity matrix 

  p hydrostatic pressure (Pa) 

 Q quality factor (-)  

  t time (s) 

 V volume of the fluid phase (m3) 

 v fluid velocity vector (ms-1) 

ij  Kronecker delta  

ε  fluid strain rate tensor 

  dissipation due to friction in the fluid phase (W/m3) 

,  shear and bulk  viscosity of the fluid (Pa  s) 

  density of the fluid (kg/m3) 

σ  fluid stress tensor (Pa) 

  circular frequency (rads-1) 

INTRODUCTION 

Oscillatory flow of a viscous fluid in deformable porous 

media induced by seismic waves dissipates some energy as 

heat and therefore results in seismic wave attenuation and 

dispersion (Müller et al., 2010). Though this dissipation is 

typically described through macroscopic equations 

describing the porous continuum (e.g. Biot, 1962), it has 

its origin entirely within the fluid phase occupying the 

pore space of the rock. Therefore simulating fluid flow at 

the pore scale provides a means to get further insight into 

the mechanism of wave-induced flow (Müller and 

Saenger, 2011). Several approaches have been suggested 

to model attenuation based on digitized rocks. Zhang and 

Toksöz (2012) combined elastic upscaling simulations 

with a micro-mechanical model to account for fluid effects 

and attenuation. Müller and Saenger (2011) used 

viscoelastic simulations to understand the role of 

dissipation at the pore scale. Though these approaches 

yield some insights, in no case is the fluid flow equation 

solved explicitly. The dissipation within the fluid phase is 

a well-understood concept (e.g. Pilotti et al., 2002). It has 

been used to investigate attenuation in digitized rocks 

(Olson, 1998, 1999). However, the image quality used in 

these studies is low and the previous results are not 

conclusive.  

Simulations of single phase flow in digitized rock 

volumes have been performed by various authors (e.g. 

Olson and Rothman, 1997, Fourar et al., 2004). The focus 

of these studies is to understand the applicability of 

Darcy’s law for fluid transport through the rock. There is a 

considerable body of literature on the extraction of the 

permeability (e.g. Ahmed and Iglauer, 2012, Raeini et al., 

2012) from digitized rock simulations. Simulations of 

two-phase fluid flow using digitized rock models have 

also been performed (Peszynska and Trykozko, 2013). 

Schembre-McCabe et al. (2012) give examples of how 

relevant parameters of the two-phase flow regime can be 

extracted from digital rocks. Fluid transport is, however, 

not the main interest of the current paper and therefore 

will not be reviewed in detail here. 

There are several numerical methods available for 

simulating fluid flow in complex media. Five main 

approaches can be identified (Maekin and Tartakovsky, 

2009): pore network models, lattice gas and lattice 

Boltzmann methods, Monte Carlo methods, Particle 

methods (molecular dynamics, dissipative particle 

dynamics, and smoothed particle hydrodynamics), and 

grid-based computational fluid dynamics coupled with 

interface tracking and a contact angle model (e.g. Raeini et 

al., 2012). An exhaustive review of these methods is 

beyond the scope of this paper. Our current investigation 

focuses on numerical aspects of Darcy flow, computing 

the Rayleigh dissipation function for a rigid rock matrix 

and we thereby developed a 2 way rock-fluid interaction 

capability that can be used to quantify the dissipation 

function and relate this to seismic attenuation. For the case 

of a rigid rock matrix, we employed an element based 

finite-volume method for pore spaces by solving the full 

Navier-Stokes equations. For the deformable rock, we 

solved full momentum equations (with the finite element 

method) for the solid matrix. 
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BASIC EQUATIONS FOR MODELING 

Navier-Stokes equations 

The aim of this paper is to quantify frictional attenuation 

associated with local flows induced by waves in a fluid-

saturated porous rock. To tackle such a problem at the 

pore scale numerically means that two sets of equations 

must be solved in a coupled manner. The mechanical 

analysis of the solid phase can be based on the equations 

of dynamic elasticity. Here we refer to Aki and Richards 

(1980). As the dissipation is exclusively occurring in the 

fluid phase, we give a short overview of the fluid flow 

equations in the next section. Specifically we pay attention 

to how dissipation due to internal friction arises in a 

Newtonian viscous fluid. 

In the presentation of the basic flow equations we 

follow the terminology of Happel and Brenner (1983). The 

continuity and momentum equations for a unit volume 

bound by its control surface are: 
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This is the general form of the Navier-Stokes equation. 

Here ρ is the fluid density and the fluid velocity vector is 

v. The fluid stress tensor is σ. The meaning of the terms of 

the momentum equation on the left-hand side is as 

follows. The first term is the rate of increase of momentum 

per unit volume. The second term is the rate of momentum 

loss by convection through the control surface, per unit 

volume. The right-hand side terms have the following 

meaning. The first term denotes the stresses acting on the 

surfaces of the unit volume. The second term denotes the 

external body forces on the element, per unit volume. For 

a Newtonian fluid the stress tensor is: 

εIvIσ  2)(   p                (3) 

where p is the hydrostatic pressure. This is the pressure the 

fluid would be supporting if it were at rest. is the bulk 

viscosity (related to fluid compressibility), ε is the strain 

rate tensor and  is the shear viscosity (related to 

transverse transport of momentum). The strain rate tensor 

is defined as 
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where the star symbol means transpose. The stress tensor 

can be written as 

ijijij p                            (5) 

where the friction tensor is given by 
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Let us now specify the Navier-Stokes equation for 

incompressible flow. Incompressible flow means that the 

fluid density remains constant. Therefore the bulk 

viscosity term in (3) is neglected. From the continuity 

equation it then follows that  

0 v                                     (7) 

holds. If one further assumes that the shear viscosity is a 

constant, then the momentum equation specializes to 

Fvvv
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This equation corresponds to equation 2-1.15 in Happel 

and Brenner (1983). 

Rayleigh dissipation function 

The flux of mechanical energy (a vector field) is the scalar 

product of local velocity field with the fluid stress tensor, 

σv                                      (9) 

The rate per unit time and per unit volume at which energy 

is supplied by the work done by the stresses on an 

elementary fluid volume is 

)( σv                                (10) 

This power can be represented as (equation 2-2.2 in 

Happel and Brenner, 1983) 

)()( σvvσv  p       (11) 

The meaning of the terms is as follows. On the left hand 

side we have the work per unit time and per unit volume 

done by the stresses acting on an element of fluid volume. 

It can be decomposed into three parts. The first term on 

the right hand side is work per unit time done to change 

the volume of the fluid volume element. The second term 

is the dissipation term which is work per unit time done on 

fluid volume element to overcome the internal friction. It 

is given by 
2)(: 2 vεε                    (12) 

The third term is work per unit time done in the motion of 

the whole fluid volume element. The dissipation integrated 

over the whole fluid domain is called Rayleigh dissipation 

function (Happel and Brenner, 1983, equation 2-2.4) 
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For incompressible flow the dissipation is given by 

εε : 2                           (14) 

Using (4) this can be further simplified as 
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 The Rayleigh dissipation function is then 
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Here the integration volume extends over the whole fluid 

domain. 

Attenuation due to dissipation and quality factor 

In the context of this paper wave attenuation is fully 

attributed to dissipation in the fluid phase. Therefore, in 

the general definition of the quality factor (Aki and 

Richards, 1980) the dissipated energy can be associated 

with the Rayleigh dissipation function. Thus, we have 

E

E

Q 




)(

1
                               (17) 

where ω is the circular frequency and E is the peak strain 

energy of a wave cycle. The peak strain energy of the 

wave cannot be solely computed from flow simulations: 

the mechanical deformation must be computed too. In 

other words, to compute an absolute Q value due to wave-

induced flow, the coupled problem of flow and solid 

deformation has to be solved. Note that the peak strain 

energy is not strongly dependent on frequency. Thus, the 

frequency dependence of an attenuation mechanism can be 

studied using the above Q definition if the dissipation E  

is known. This recipe has been used in order to analyse the 

asymptotic behaviour of attenuation due to wave-induced 
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flow in the presence of mesoscopic heterogeneities 

(Müller and Rothert, 2006) and will be applied here too. 

DIGITIZED RIGID POROUS ROCK SIMULATION  

Image processing 

This section assumes that the rock is rigid: deformable 

rock is described in a later section. Numerical simulations 

of the Navier-Stokes equations for incompressible flow 

were performed in rock pore spaces obtained from x-ray 

micro-tomographic images. For deformable rock 

(explained later), momentum conservation equations were 

solved for the grains. The pore morphology of the sample 

was extracted with x-ray micro-tomography 

(approximately (5.78µm) 3 voxel size) by segmenting the 

images based on their greyscale contrast using image 

processing software. 2D micro-CT image slices were 

stacked together to generate the 3D F-42 sand pack sample 

of size 541x431x396 voxels (Figure 1a). A small sub-

volume of 100x100x100 voxels was extracted from this 

sample (Figure 1b) and was used for flow analysis. 

  

    

Figure 1: (a) Original sample (541x431x396 voxels) and 

(b) small sample (100x100x100 voxels) used for flow 

analysis. 

The small sample (100x100x100 voxels) consists of 

grains and pore spaces. The pore spaces were separated 

from grains and were used to generate a triangular surface 

mesh (Figure 2b). The mesh of separated grains (Figure 

2a) was used for deformable rock simulation (in a later 

section). The quality and ability of the triangular surface 

mesh to generate the tetrahedral volume mesh was 

checked with orientation, intersection and tetra quality. 

The surface mesh was then imported into a powerful mesh 

generating software to generate the volume mesh. Initially 

the volume mesh of the all pore spaces was generated. For 

the flow analysis, to save computational expense, all 

disconnected pore spaces were truncated out of the mesh 

(Figure 3) as such disconnected void spaces did not 

contribute to the flow (and in this work only the flow in 

the connected pore space contributes to attenuation). 

 

   
Figure 2: Surface Mesh (a) grains and (b) pore spaces. 

Oscillatory Stokes flow 

The computations were performed for three-dimensional, 

transient, isothermal, single phase laminar flow (brine) 

which simultaneously solves u, v, and w momentum of the 

Navier-Stokes equation. The software uses an unstructured 

mesh based on finite volume (FV) method. FV can 

accommodate any type of grid, so it is suitable for 

complex geometries. The grid defines only the control 

volume boundaries and need not be related to a coordinate 

system. 

A uniform sinusoidal brine velocity inlet boundary 

condition )))1000.2(sin(0001.0( tvx   was specified. A 

pressure boundary condition was prescribed at the outlet 

(opposite side of inlet), and the reference pressure was set 

to 0. All the other faces were assumed to be impermeable, 

which was obtained by applying no-slip wall boundary 

conditions. At the start of the simulation, the sample was 

fully saturated with brine. Approximately 1.74 million 

tetrahedral elements were used to generate the volume 

mesh. A sample volume mesh for the F-42 sand pack is 

shown in Figure 3. The simulation was run for one 

complete cycle (0.01s) and the convergence criterion for 

all variables was set to 10-5. 

 
Figure 3: Volume mesh used in flow analysis. 

Snapshots of the flow field 

All results for the flow field characteristics are shown for 

the positive peak of the sine wave (i.e. at time 0.0025 sec). 

Figure 4 shows the pressure drop along the main flow 

direction and its pore-scale variations. Snapshots of the 

fluid velocity vectors are shown in Figure 5 and contours 

in Figure 6. Highest fluid velocities are observed at the 

centres of the pore channels. This is the expected result as 

the simulation is limited to laminar flow only and a no-slip 

boundary condition is applied. 

 

Figure 4: Pressure drop in the mid-plane along the flow 

direction. The flow is from left to right. 

a b 

a b 
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Dissipation function analysis in a rigid porous medium 

Figure 7 shows a snapshot of the dissipation per unit 

volume. In agreement with laminar flow theory, large 

dissipation is observed in the vicinity of the pore walls. 

This is due to the existence of viscous boundary layers. 

The associated viscous skin depth is a function of 

frequency (not shown here). It is interesting to observe 

that maximum dissipation occurs close to the pore walls 

within the narrowest pore channels. 

 

 

Figure 5: Velocity vector in the mid-plane along the flow 

direction. The flow is from left to right. 

 

 
Figure 6: Velocity contour in the mid-plane along the 

flow direction. The flow is from left to right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Dissipation function in the mid-plane along the 

flow direction. The flow is from left to right. 

The Rayleigh dissipation function is shown in Figure 

8 for different frequencies. As the solid frame in these 

simulations is rigid, the oscillating fluid flow and the 

associated dissipation resemble the high-frequency part of 

the Biot global flow attenuation mechanism (Biot, 1962). 

Then the peak strain energy, E, in the equation for Q 

(equation 17) can be assumed to be a frequency-

independent constant. 

Figure 8: Rayleigh dissipation as a function of frequency. 

The Biot critical frequency is approximately 750 Hz. 

Figure 9 shows the inverse quality factor versus frequency 

(red symbols) derived from the dissipation function 

(Figure 8). The blue line corresponds to the high 

frequency attenuation asymptote 1  of the Biot global 

flow attenuation. Therefore, we conclude that the 

simulation correctly reproduces the expected theoretical 

behaviour. 

Figure 9: Inverse quality factor versus frequency derived 

from the dissipation function  

DIGITIZED DEFORMABLE ROCK SIMULATION 

Numerical modelling procedure 

In this section the workflow has been developed such that 

the solid deformation can be coupled to the fluid motion. 

For the fluid domain (pore spaces), we obtained three-

dimensional transient, incompressible, isothermal, single 

phase (brine) laminar flow fields by solving the continuity 

and momentum equations which we described in the 

previous section. The governing equation for the structural 

domain (grains) was the momentum conservation equation 

and was solved on structural elements  

The grains were assumed to be elastic, isotropic and 

homogeneous with a density of 2375 kgm-3 and a Young’s 

Modulus and Poisson’s ratio of 16 GPa and 0.45 

respectively. These values are assumed as a test case only 

to develop the 2-way coupling. The geometries are shown 

in Figures 10a and 10b. The boundary conditions in 2-D 

and 3D are shown in Figures 11 and 12 respectively. For 

the fluid flow a uniform brine velocity (1x10-4 ms-1) inlet 

boundary condition was specified (in the X direction, 

Figures 11a and 12a). A pressure boundary condition was 

prescribed at the outlet (opposite side of inlet, Figure 12a, 

and the reference pressure was set to 0. All the other faces 
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were assumed to be impermeable, which was obtained by 

applying no-slip wall boundary conditions. For the 

structural analysis (grains), a uniform load of 2 MPa was 

applied on the top face (Ymax in Figure 11b) and the 

bottom face was held fixed (Figure 11b). Only movement 

in the Y direction was allowed due to applied load (2 

MPa). All the other motions of the control volume were 

restricted. 

  

Figure 10: Geometry of (a) pore spaces and (b) grains. 

 

 

 

 

 

 

 

 

 

Figure 11: Boundary conditions (schematic diagram) for 

(a) the flow and (b) mechanical loading simulations. 

 

  
Figure 12: Boundary conditions for (a) pore spaces and 

(b) grains. 

 

The mesh consisted of tetrahedral elements (Figures 

13a and 13b) for both pore spaces and grains. The total 

number of elements for the pore spaces and grains were 

152,890 and 353,192 respectively.  

  

Figure 13: Mesh of (a) pore spaces and (b) grains. 

At the start of the simulation, the sample was fully 

saturated with brine. The simulation was run for 0.2 sec 

and the convergence criterion for all fluid variables was 

set to 10-5. The brine in the pore spaces exerts pressure on 

the grain wall, causing it to deform and, thus, alter the 

flow of the fluid. The pressure and shear force from the 

flow analysis and deformations from the structure analysis 

were exchanged through a common FSI as shown in 

Figure 14. 

  
Figure 14: Fluid-structure interface for (a) pore spaces 

and (b) grains. 

Snapshots of coupled deformation and flow fields  

All results for the flow field (pore spaces) and structural 

analyses (grains) are obtained after 0.2 sec. Figure 15b 

shows the Von-Mises stress induced by the flow field 

(Figure 15a) and mechanical load (in Y-direction). It is 

interesting to note that the stress concentrations in the 

vicinity of grain contacts (Figure 15b) are highest. 

 

  
Figure 15: (a) magnitude of fluid velocity in the pore 

space (b) corresponding Von-Mises stress distribution.  

 

Figure 16a shows the fluid velocity vector field 

obtained from flow analysis and the displacement field 

(Figure 16b) obtained from grain analysis. This 

displacement is the result of both pressure force (solved 

from flow analysis) and mechanical load (applied as a 

boundary condition in solid analysis). As the mechanical 

load is applied at the top of the sample and the bottom is 

held fixed, the displacement is large at the top and zero at 

the bottom. 

 

  
Figure 16: (a) flow velocity vector field and (b) 

displacement field in the solid part.  

 

The highest fluid velocities are observed at the centre 

of the pore channels as the simulation is limited to laminar 

flow only and a no-slip boundary condition is chosen 

(figures 15a and 16a). The dissipation function for 

mechanical wave-induced flow can be obtained from the 

a b 

a b 

a b 

a b 

a b 
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brine flow field distribution. The details are already 

explained in the digitized rigid porous rock section. 

DISCUSSION  

The aim of this paper is to quantify frictional attenuation 

associated with local flows induced by seismic waves in a 

fluid-saturated porous rock by numerical means. The 

paper is split into two steps. First, pore-scale flow 

simulations in the laminar flow regime in a digitized rigid 

rock volume are performed. In the next step the workflow 

is extended such that solid deformation can be coupled to 

the fluid motion. Our basic assumption here is that wave-

induced flow attenuation is associated with local flows 

driven by induced pressure gradients. These induced 

pressure gradients are associated with stiffness contrasts 

and stress concentrations in the solid phase. The local 

flows are associated with internal friction in the fluid due 

to a finite fluid shear viscosity. In our current 

investigation, the solid frame is made of the same material 

(same stiffness) throughout and there is only a single fluid 

saturating the pore space. Thus, no significant local 

pressure gradients can develop. Only very localized stress 

concentrations are observed in Figure 15b. Moreover, the 

spatial scales over which these pressure gradients develop 

govern the characteristic frequency of the fluid pressure 

relaxation process. Simple analysis shows that the 

characteristic frequency of attenuation due to wave-

induced flow scales as
2L

D
c  , where D is the diffusivity 

and L is the characteristic size of the material 

heterogeneity (Müller et al., 2010). For typical rock/fluid 

properties it requires L be on the order of centimetres to 

produce significant attenuation below 100Hz. Or, 

analogously, in order for squirt flow attenuation to be 

significant at seismic frequencies, very small crack aspect 

ratios are needed (Mavko et al., 2009). In other words, for 

digitized rock images as used in this study with a size of a 

few grains only and with no small aspect ratio micro-

cracks present, it is anticipated that no significant 

attenuation at seismic frequencies can be predicted using 

coupled flow-solid deformation simulations. However, by 

extending the model domain and introducing 

heterogeneities with a characteristic size of several grains, 

the developed workflow should be adequate for simulating 

wave induced attenuation. 
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