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ABSTRACT
A non-uniform thermal forcing imposed along a horizon-
tal boundary gives rise to horizontal convective flow, which
finds application as a simple model to study ocean circu-
lation, the Earth’s mantle convection and industrial pro-
cesses. The strength of thermal forcing is characterised
by the Rayleigh number. At high Rayleigh numbers, hor-
izontal convection is convectively dominant, featuring thin
thermal and velocity boundary layers adjacent to the forc-
ing boundary. At sufficiently high Rayleigh numbers, hor-
izontal convection flow has been observed to become un-
steady. The scaling of Nusselt number, quantifying heat
transport, and the Rayleigh number quantifying thermal
forcing, yields a 1/5-power scaling which is well understood
at low Rayleigh number. In this study, a high-order spectral
element solver is used to study horizontal convection at high
Rayleigh number within a rectangular enclosure with buoy-
ancy forcing imposed along a horizontal forcing boundary.
These high-resolution simulations provide insight into the
dynamics of horizontal convection at high Rayleigh num-
ber to reveal the existence of a 1/4-power scaling. This 1/4-
regime is generated by the horizontal convection of cooler
fluid over the hot end of the forcing boundary, spontaneous
plume eruptions upstream of the enclosure end-wall carry
heat directly into the interior overturning flow. This vio-
lates Rossby’s balance between vertical thermal diffusion
from the boundary into the adjacent boundary layer and the
horizontal transport of heat within the boundary layer.

NOMENCLATURE
Latin Symbols
cp fluid specific heat capacity
FT heat flux per unit area
g gravitational acceleration
ĝ unit vector in direction of gravity
H height of enclosure
h boundary layer thickness scale
hu kinematic boundary layer thickness scale
hθ thermal boundary layer thickness scale
L width of enclosure
Nu Nusselt number
p pressure
Pr Prandtl number
Ra Rayleigh number
RaF flux Rayleigh number
Sh Sherwood number

t time
u velocity vector
u x component velocity
v y component velocity
x Cartesian horizontal coordinate
y Cartesian vertical coordinate

Greek Symbols
α volumetric expansion coefficient
κ fluid thermal diffusivity
µ fluid kinematic viscosity
ρ fluid density
θ temperature
δθ horizontal temperature difference along base

Sub/superscripts
0 reference value

INTRODUCTION
Horizontal convection describes convection flow
driven in an enclosure by non-uniform heating im-
posed across a horizontal boundary (Hughes and Grif-
fiths, 2008), and serves as a model for global ocean
currents (Stommel, 1962; Huang, 1999; Wunsch and
Ferrari, 2004). These flows are characterised by
a Rayleigh number Ra representing the strength of
buoyancy over dissipative effects, and a Prandtl num-
ber Pr representing the ratio of molecular to thermal
dissipation in the fluid. Overturning flow exists at
all Rayleigh numbers, while higher Rayleigh num-
bers invoke a convective regime characterised by thin
thermal and kinematic boundary layers adjacent to
the forcing boundary that scale inversely with Nusselt
number Nu (Mullarney et al., 2004) characterising the
horizontal heat transport. This overturning flow acts
similarly to the “wind of turbulence” in Rayleigh–
Bénard convection, forging an important connection
to Grossmann and Lohse’s unifying theory of ther-
mal convection (Grossmann and Lohse, 2000, 2001,
2002). The scaling of Nusselt number with Rayleigh
number is critical to our understanding of the role of
buoyancy destabilisation in driving global ocean cur-
rents (Siggers et al., 2004; Mullarney et al., 2004;
Hughes and Griffiths, 2008; Barkan et al., 2013). In
horizontal convection, Nusselt number is based on the
net vertical heat flux over the thermal forcing bound-
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ary.

Rossby (1965) developed scalings for forcing bound-
ary layer quantities in thermal convection heated un-
evenly from below. Assuming a balance between
vertical thermal diffusion into the thermal boundary
layer from the base and horizontal transport of heat
within the boundary layer leads to scaling of bound-
ary layer thickness as h∼ Ra−1/5 and Nusselt number
as Nu∼ Ra1/5.

Evidence supporting Rossby’s scalings at Rayleigh
numbers sufficient to invoke the convective regime
is plentiful. Numerical and laboratory experiments
by Mullarney et al. (2004) demonstrated a Nusselt
number scaling against a thermal flux-based Rayleigh
number Nu ∼ Ra1/6

F equivalent to a Ra1/5 scaling,
while other numerical studies have directly demon-
strated the Nu ∼ Ra1/5 scaling up to Rayleigh num-
bers Ra = O(109) (Siggers et al., 2004; Sheard and
King, 2011) and Ra = O(107) (Chiu-Webster et al.,
2008). Numerical simulations by Sheard and King
(2011) and Ilıcak and Vallis (2012) each demonstrated
a Ra−1/5 scaling for forcing boundary layer thickness.

These flows were known to become unsteady beyond
some Rayleigh number (Sheard and King, 2011) re-
ported unsteady flow beyond Ra= 6±2.5×108 while
Ilıcak and Vallis (2012) observed unsteady flow for
Ra > 1010. The effect of unsteady flow on horizon-
tal convection scalings was first recognised by Sheard
and King (2011), where simulations across several
enclosure height ratios demonstrated Nu–Ra scaling
exponents exceeding 1/5. Theoretical support for
higher power-law exponents in the scaling for Nu is
availed by the variational analysis of Siggers et al.
(2004), which places an upper bound of 1/3 on the
scaling exponent.

An alternative explanation for the behaviour of hori-
zontal convection was offered by Gayen et al. (2014)
from three-dimensional numerical simulations con-
ducted at Pr = 5 across Rayleigh numbers 5.86×
107 ≤ Ra ≤ 5.86× 1014 in an enclosure with height-
to-width ratio H/L = 0.16. They observed Nusselt
numbers exceeding the Ra1/5 scaling regime beyond
Ra = O(108), before settling onto a second regime
exhibiting Ra1/5 scaling at elevated Nusselt numbers
beyond Ra = O(1012). An explanation for this re-
covered Ra1/5 scaling at higher Rayleigh numbers is
offered by a simple model based on a local vertical
turbulent plume from a line source that maintains a
stably stratified interior (Hughes et al., 2007). De-
spite the different construction to Rossby’s scaling ar-
gument, this model predicts the same Nu ∼ Ra1/6

F ∼
Ra1/5 scaling.

This study aims to resolve the apparent shift in the
scaling exponent at high Rayleigh numbers (Sheard
and King, 2011; Gayen et al., 2014).

METHODOLOGY
The system (Figure 1) comprises a rectangular en-
closure of width L and height H filled with an in-
compressible fluid with kinematic viscosity ν , ther-
mal diffusivity κ , reference temperature θ0 and refer-
ence density ρ0. The enclosure aligns with a Carte-
sian coordinate system with x and y being the hor-
izontal and vertical coordinates, respectively. The
origin is at the bottom-left corner of the enclosure.
Lengths, time (t), velocity vector (u = 〈u,v〉), pres-
sure (p) and temperature (θ ) are respectively scaled
by L, L2/κ , κ/L, ρ0κ2/L2 and δθ (the temperature
differential imposed across the forcing boundary). All
quantities are expressed in their dimensionless form
hereafter, and p and θ are hereafter taken relative to
their respective reference values. All boundaries are
rigid and impermeable, satisfying the no-slip condi-
tion u = 0. Adiabatic boundary conditions are im-
posed on side and top boundaries, while along the
forcing boundary a linear temperature profile is im-
posed ranging from θ = 0 at (x,y) = (0,0) to θ = 1
at (x,y) = (1,0). A Boussinesq model for buoyancy
is employed, whereby density changes (ρ = 1−αθ )
are assumed to be small and are therefore isolated to a
buoyancy term in the momentum equation. The equa-
tions governing conservation of mass, momentum and
energy are therefore

∇ ·u = 0, (1)

∂tu+(u ·∇)u =−∇p+Pr∇
2u−PrRa ĝθ , (2)

∂tθ +(u ·∇)θ = ∇
2
θ , (3)

where ∂t represents partial differentiation with respect
to time, and ĝ is a unit vector in the direction of grav-
ity (here acting vertically downward). Equation (2)
incorporates the Prandtl number Pr = ν/κ and the
Rayleigh number Ra = αgδθL3/νκ .

Equations (1)-(3) are solved using a nodal spectral el-
ement method for spatial discretisation and a third-
order operator-splitting scheme based on backwards-
differentiation for time integration (Karniadakis et al.,
1991). The scheme achieves exponential conver-
gence with increasing element polynomial order (Kar-
niadakis and Sherwin, 2005), negligible diffusion er-
ror (Giraldo, 1998) and minimal dispersion error (Gi-
annakouros and Karniadakis, 1994; Giraldo, 1998). It
combines the flexibility of finite-element methods for
localised mesh refinement with the superior conver-
gence properties of spectral methods with increasing
element order. Further details and validation of the
code is supplied in (Sheard and King, 2011; Hussam
et al., 2014).

Simulations are performed in an enclosure with
H/L = 0.16 matching published works (Mullarney
et al., 2004; Sheard and King, 2011; Gayen et al.,
2014): (Sheard and King, 2011) demonstrates H/L
independence for H/L ≥ 0.16 beyond Ra = O(108).
We consider only Prandtl number Pr = 6.14, repre-
sentative of water, due to the motivating interest in
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H u, ∂nθ = 0

u = 0, θ = (δθ/L)x

L

x

y

Figure 1: Schematic representation of the system un-
der investigation. The enclosure has width L and
height H, and boundary conditions on velocity (u)
and temperature (θ ) are labelled, with ∂n denoting the
partial derivative with respect to an outward normal
to the boundary.

global ocean circulation. The domain is discretized
into a conforming grid of 3692 quadrilateral spec-
tral elements with degree ranging from 6 at lower Ra
up to 10 for Ra = 3.2× 1013. Elements are concen-
trated towards the bottom forcing boundary and the
hot end of the enclosure to capture the boundary lay-
ers, plume and any unstable flow structures. Simu-
lations therefore contained between 711× 131 6th-
order interpolation points and 1279× 235 10th-order
interpolation points, an unparalleled resolution for di-
rect simulation of horizontal convection over the com-
puted Rayleigh number range Ra ≤ 3.2× 1013. All
simulations are time-evolved to a statistically steady
state before time-averaged Nu are calculated.

RESULTS
Direct horizontal convection solutions are obtained
up to Ra = 3.2× 1013. Unsteady flow in the form
of a time-periodic equilibrium state first appears at
Ra = 5.5×108, refining earlier reported values 3.5×
108 < Ra < 8.5× 108 (Sheard and King, 2011) and
Ra < 5.86×108 (Gayen et al., 2014). Time-periodic
flow quickly gives way to an irregular regime with in-
creasing Rayleigh number beyond Ra≈ 1.8×109.

The dependence of Nusselt number on Rayleigh num-
ber is shown in Figure 2. The convective regime es-
tablishes beyond Ra = O(107) (labelled as regime I),
adopting Rossby’s Ra1/5 scaling. The Ra1/5 scal-
ing holds through the time-periodic regime (II), but
the onset of the irregular flow regime (III) brings
an elevated scaling for Nusselt number going with
Ra0.24±0.01. Inspection of Figure 3 in (Sheard and
King, 2011) reveals that their increased Nusselt num-
ber scaling beyond Ra = O(109) in fact adopted a
scaling exponent of 0.25, consistent with this regime.
Hence rather than an approach of the scaling exponent
towards the theoretical upper bound of 1/3 (Siggers
et al., 2004), these results may represent the influence
of a scaling regime with an exponent of 1/4. This
regime is robust, adhering close to Ra1/4 for more
than four decades in Rayleigh number.

A physical understanding of this Ra1/4 regime is
aided by consideration of the vertical thermal gra-
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Figure 2: Plots of log10(Nu) and its gradient against
log10(Ra). 1/5 and 1/4 gradient indicators are in-
cluded for guidance, and labels I, II and III identify
the respective steady-state, time periodic and plume
eruption convection regimes. Regimes I and II fol-
low Rossby’s scaling (extrapolated along the dash-
dot-dot line) described by Nu = 0.171Ra1/5, while
four decades of Rayleigh number through regime III
consistently demonstrate a Ra1/4 scaling adhering to
Nu = 0.59Ra1/4. The threshold between 1/5 and 1/4
regimes is Ra≈ 1.8×109.

dient, ∂θ/∂y, along the forcing boundary. Where
Rossby’s Ra1/5 scaling holds, ∂θ/∂y at different
Rayleigh numbers should coincide when scaled by
Ra1/5. Figure 3 compares two cases: a borderline
regime I/II case (Ra = 5.5× 108) exhibiting to the
Ra1/5 scaling in Figure 2, and a regime III case (Ra =
1× 1011) exhibiting Ra1/4 scaling. Along much of
the forcing boundary, the normalised thermal gradi-
ents are coincident. Beyond x ≈ 0.94, the higher-Ra
case exhibits a significant increase in thermal gradi-
ent. This in turn increases Nusselt number beyond
Rossby’s Ra1/5 scaling. The elevated thermal gradi-
ents are produced across the hottest part of the base
where unsteady flow features manifest in the form of
buoyant mushroom plumes ascending from the forc-
ing boundary upstream of the end-wall (compare the
instantaneous thermal fields in Figure 3).

Why do these plumes increase the heat transport? Lo-
cally, the thermal boundary layer in stable horizontal
convection is analogous to a forced-convection sce-
nario: heat enters the boundary layer from the hot
boundary via conduction, and is transported horizon-
tally within the kinematic boundary layer established
as part of the global overturning flow. At Prandtl num-
bers Pr� 1 such as in this study, the thermal bound-
ary layer is nested within the kinematic boundary
layer, so there is no heat transport across the bound-
ary layer into the interior. This is instead facilitated
by the vertical plume at the hot end-wall. In contrast,
within the unsteady plume eruption region a natural-
convection scenario is created: buoyancy supply to
the fluid is sufficient to disrupt the horizontal trans-
port within the boundary layer, and hot fluid is trans-
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Figure 3: A plot of −(∂θ/∂y)/Ra1/5 against x over
the hotter 60% of the forcing boundary. Rayleigh
numbers Ra = 5.5× 108 and 1× 1011 are shown.
Solid lines show the time mean data, and error bars
the standard deviation. Instantaneous temperature
fields for the two Rayleigh numbers are included
above and below the plot, respectively.

ported directly into the bulk overturning flow beyond
the boundary layer. The individual plume eruptions
entrain nearby fluid from within the boundary layer:
this sweeping significantly increases the vertical ther-
mal gradient along the base between the plumes, lead-
ing to the observed heat transport increase in this re-
gion.

Figure 4 compares the horizontal heat transport sce-
nario satisfying Rossby’s Ra1/5 scaling argument in
regime I/II (Figure 4a) with the elevated heat flux
in the Ra1/4 regime (Figure 4b,c), where the stable
Ra−1/5 thermal layer has been destroyed and replaced
by plumes transporting heat vertically directly into the
interior of the flow. Gayen et al. (2014) had suggested
that a turbulent line plume model (Hughes and Grif-
fiths, 2006) may explain their apparent recovery of a
Ra1/5 Nusselt number scaling at high Rayleigh num-
ber, but the conditions for such a model appear to be
violated by the direct supply of heat to the interior
bulk overturning flow captured here. It is possible that
the large-eddy simulation modeling they employed
for Ra& 5×1010 may have been unable to resolve the
delicate plume structures essential to this heat trans-
port mechanism. Indeed, the plume filaments and
thermal boundary layer in Figure 4(b,c) are at least
an order of magnitude smaller than the former Ra−1/5

thermal layer thickness at those Rayleigh numbers.
The high-order low-dissipation scheme adopted in the
present study is ideal for capturing these structures.

A Nu ∼ Ra1/4 scaling is well-known in natural con-
vection: horizontal plates heated from below in mass
flow experiments (Goldstein et al., 1973) (where
Sherwood number Sh is analogous to Nusselt num-

Figure 4: Detail view of the temperature fields at the
hot end of the forcing boundary at Rayleigh num-
bers as shown. (a) shows the right-hand 60% and
full height of the enclosure. (b) and (c) zoom in on
the bottom-right-hand 35.3% and 11.2% of the frame
coverage in (a), following the Ra−1/5 scaling of the
boundary layer and end-wall plume (Mullarney et al.,
2004; Sheard and King, 2011). The unbroken white
line in (a) marks the perimeter of the thermal bound-
ary layer and end-wall plume. The dashed lines in (b)
and (c) shows where this perimeter would scale down
to at the higher Rayleigh number following Rossby’s
Ra−1/5 scaling. While each frame depicts a differ-
ent Rayleigh number, the dashed rectangular boxes in
(a) and (b) illustrate the respective plot areas shown
in (b) and (c) to reinforce the smaller scales with in-
creasing Ra. Dark to light contours respectively show
cold (θ = δθ/2) to hot (θ = δθ ) fluid, and the solid
black line indicates zero horizontal velocity: below
this line flow is left to right, above is right to left.

ber) correlate to Nu = 0.59Ra1/4, and for inclined
heated plates facing upward, (Fujii and Imura, 1972)
obtained Nu = 0.56Ra1/4. These are very close to the
present regression Nu = 0.59Ra1/4. Grossmann and
Lohse (2000) construct a 1/4 scaling (their regime
Iu) from an argument that dissipation occurs primar-
ily within the thermal and kinematic boundary layers
at higher Prandtl numbers where the thermal bound-
ary layer (thickness hθ ) is nested within the kinematic
boundary layer (thickness hu). The same scaling can
also be obtained by modifying the plume scale analy-
sis presented by Castaing et al. (1989): assuming that
the conductive thermal boundary layer breaks into fil-
aments of thickness similar to hθ , which accelerate to
the roll velocity uc such that buoyancy balances the
viscous force, then αgδθ ρ0hθ ∼ µuc/hu. If uc is
proportional to the free-fall velocity (Xin et al., 1996),
one obtains Nu ∼ Ra1/4Pr−1/12, an exact match to
Grossmann and Lohse (2000).
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Figure 3 demonstrates that horizontal convection heat
transport strictly operates as a mixed regime (Gross-
mann and Lohse, 2000), with the stable forcing
boundary layer obeying Ra1/5 scaling while con-
tributing only modestly to the overall heat transport,
while the unstable plume region obeying the Ra1/4

scaling at the hotter end contributes significantly to
the overall heat transport. As the plumes elevate heat
transport at the part of the base where heat transport
was greatest under the Ra1/5 scaling regime, the Ra1/4

scaling dominates.

An alternative to the fixed-temperature forcing
boundary considered here is a fixed-thermal-flux con-
figuration (Mullarney et al., 2004). We expect the
same upward shift in scaling exponent to arise as
both configurations manifest the same global flow be-
haviour, though some differences in the size or loca-
tion of the Ra1/4 plume region is inevitable due to
the different temperature distribution along the forc-
ing boundary under the flux-driven configuration.

The discovery of a Ra1/4 regime in horizontal convec-
tion analogous to the Iu regime under the unifying the-
ory of Grossmann and Lohse invites extrapolation to
Rayleigh numbers beyond those achievable with con-
temporary compute capabilities. In Rayleigh–Bénard
convection, the Iu regime is ultimately replaced by the
IVu regime beyond RaRBC ≈ 1012, where the domi-
nant contribution to thermal and molecular dissipa-
tion shifts from the boundary layers to the bulk in-
terior. This regime scales as Nu ∼ Ra1/3, precisely
the upper bound reasoned by Siggers et al. (2004). A
Ra1/3 scaling regime was captured at high Ra in early
cooling wire experiments (Davis, 1922) and from a
heated horizontal flat plate (Fujii and Imura, 1972).
In the context of Rayleigh–Bénard convection in the
limit of high Rayleigh number, heat flux reaches a fi-
nite limit independent of the enclosure height scaling
with Ra1/3 (Priestley, 1954), and (Malkus, 1954) re-
cover a Ra1/3 scaling from analysis of the turbulent
regime in terms of the marginal stability of the mean
flow.

We finally consider the oceanic implications of
these results. Constructing a vertical Rayleigh
number across the thermal boundary layer,
Rah = αgδθ h3

θ
/νκ , yields Rah/Ra = (hθ/L)3.

From (Mullarney et al., 2004) we take
hθ/L = 2.649Ra−1/6

F , Nu = 0.81587Ra1/6
F and

RaF = NuRa. Solving for Ra given the expected
transition from the 1/4 to the 1/3 scaling regime at
Rah = 1012 yields Ra = 1.4× 1037. Using represen-
tative values for Earth’s oceans, Siggers et al. (2004)
estimates an oceanic Rayleigh number Ra = O(1031):
this is 6 orders of magnitude below our estimated
Ra1/3 regime threshold, which suggests that the
1/3 regime is unlikely to emerge in Earth’s oceans.
Hence with Nu = 0.59Ra1/4 expected to persist to
oceanic scales, representative oceanic values (Siggers
et al., 2004) ρ0 = 103 kg m−3, specific heat capacity

cp = 4200 J kg−1 K−1, κ = 10−7 m2 s−1, δθ = 10 K
and L = 107 m yield a heat flux per unit area (Mullar-
ney et al., 2004) FT = ρ0cpκ δθ Nu/L = 24 W m−2.
Taking a representative ocean surface area of ap-
proximately 2× 1013 m2 from the tropical Atlantic
ocean yields a horizontal heat flux 4.7× 1014 W.
This is below the 2× 1015 W estimate of equator-
to-pole heat flux of planetary-scale ocean circulation
(Munk and Wunsch, 1998), but is far closer than
the 3.8× 1012 W predicted from the Ra1/5 scaling
relation (from Figure 2). While these calculations
are imprecise, not least due to questions around
dissipation and Rayleigh number in real oceans
(Mullarney et al., 2004; Barkan et al., 2013), and the
choice of representative ocean area (e.g. dense water
sinking near Greenland operates over an area of order
1012 m2 whereas the total Atlantic ocean surface area
is 1.06× 1014 m2), they nevertheless demonstrate
the significance of the 1/4 scaling regime towards
the application of a horizontal convection model to
Earth’s oceans.

CONCLUSIONS
High-order spectral-element simulations identify a
Nu∼ Ra1/4 scaling regime in horizontal convection at
high Rayleigh number, whose existence is explained
by way of a vertical plume mechanism bypassing the
horizontal convection transport mechanism in a man-
ner consistent with natural convection from a heated
horizontal flat plate. This reveals that the horizontal
convection model plays a more important role than
previously thought in explaining the ocean heat trans-
port budget.
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