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ABSTRACT 

The quasi-two-dimensional flow of a liquid metal exposed 

to a strong spanwise magnetic field around a 180-degree 

sharp bend is investigated using a high-order spectral-

element algorithm.  This study identifies the effect of 

strong spanwise magnetic field strength defined by 

Hartmann number on flow characteristics such as the 

length of the downstream recirculation bubbles and the 

threshold Reynolds numbers between steady-state and 

unsteady flow regimes for the ratio between the width of 

the bend and the height of the inlet duct, 0.2 ≤ β ≤ 2. The 

study reveals that the first recirculation bubble length 

decreases with increasing Hartmann number.  The flow 

was found to be more stable as observed from the increase 

of critical Reynolds number for transition from steady to 

unsteady flow as Hartmann number increases for all β. 

This study gives useful insight into the generation of 

instability for improved mixing and heat transport in heat 

exchanger ducting in MHD systems. 

NOMENCLATURE 

 

 dynamic viscosity 

 density 

σe electrical conductivity 

a characteristic length 

B magnetic field strength 

H  Hartmann parameter 

Ha Hartmann number 

LR1 primary bubble length 

LR2 secondary bubble length 

Lz domain length in magnetic field direction 

N interaction parameter 

n number of Hartmann wall 

p pressure 

Uo  maximum inlet velocity 

INTRODUCTION 

The flow of electrically conducting liquid in a duct with 

the presence of a strong magnetic field underpins in many 

engineering applications such as metallurgical processing, 

blood meters and magnetic confinement fusion reactor 

cooling. The main motivation of this study is the 

implication of this interaction in magnetic confinement 

fusion cooling blanket used to transfer heat from the hot 

plasma fuel in the fusion reactor. The motion of liquid that 

is perpendicular to the direction of the magnetic field 

induces an eddy current, which in turn interacts with the 

magnetic field producing an electromagnetic Lorentz force 

opposes to the motion of the fluid. In a small time scale, 

the Lorentz force acts to redistribute the angular 

momentum in a single vortex, which makes it preserved in 

the direction parallel to the magnetic field. Consequently, 

this compels the flow to become two-dimensional by 

suppressing secondary flow parallel to the direction of the 

magnetic field. At larger time-scale, Hartmann damping 

acts to put a braking force onto the bulk flow velocity 

which tends to flatten the velocity profile in the duct. The 

quasi-two-dimensional flow may be efficiently simulated 

using the quasi-two-dimensional model proposed by 

Sommeria and Moreau (Sommeria and Moreau, 1982, 

Pothérat et al., 2000, Pothérat et al., 2005, Hamid et al., 

2015).  

This 180-degree sharp bend geometry is a key 

component of the coolant conduits within blankets of 

magnetic confinement fusion reactors. The working fluid 

is a liquid metal alloy, and the channels are exposed to a 

strong magnetic field that significantly alters the flow from 

the hydrodynamic case (Barleon et al., 1991, Barleon et 

al., 1996, Boccaccini et al., 2004). According to Kirillov 

et al. (1995), the efficiency of heat transfer in the fusion 

reactor that involves a huge amount of heat may decrease 

dramatically due to the strong magnetic field that damps 

the fluctuations of the flow. The sudden geometry change 

of the sharp bend creates flow separation which has the 

potential to enhance the heat transfer process (Sparrow et 

al., 1987, Liou et al., 1998, Hirota et al., 1999, Astarita 

and Cardone, 2000, Liou et al., 2000, Chung et al., 2003). 

However, further investigation is needed to understand the 

effect of Hartmann braking on the flow to elucidate the 

demotion of heat transfer efficiency in the metal fluid flow 

under strong magnetic field effect.  

 This problem is computed using a two-dimensional 

spectral-element incompressible flow solver augmented 

with the linear Hartmann friction term to satisfy the quasi-

two-dimensional model. The two-dimensional steady flow 

structure in the downstream duct is found to have 

resemblance with the flow over a backward facing step. 

The flow first passes over a large recirculation bubble 

attached to the inner wall downstream of the sharp bend, 

and subsequently another recirculation develops at the 

outer wall further downstream. 
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NUMERICAL METHODOLOGY 

 Viscous fluid is considered flowing in a duct with a sharp 

180-degree bend with the origin of our Cartesian 

coordinate system located at the centre of the inner 

vertical wall of the bend. The upstream and downstream 

ducts are parallel to each other. We consider an 

incompressible flow in this sharp bend. 

Figure 1 shows the domain including the geometric 

parameters considered in this study. a and b represent the 

height of the inlet and the width of the bend opening, 

respectively. c denotes the thickness of the divider. 

Consistent with Zhang and Pothérat (2013), the lengths of 

the bottom and top boundaries are represented by d and e, 

respectively. The inlet and outlet height are identical. The 

ratio of the divider thickness to the inlet height is set to be 

c/a = 0.04. The lengths of the bottom and top boundaries 

are d = 15a+b and e = 3d, respectively. The length of the 

top boundary is set to be adequately long to capture the 

dynamics of the flow at the downstream of the sharp bend. 

 

 

Figure 1: Schematic diagram of geometry. Magnetic field 

B direction is in the spanwise direction. 

 

Three independent non-dimensional numbers may be used 

to characterize these quasi-two-dimensional MHD flows. 

First the Reynolds number, 

vaURe o / ,                  (1) 

where a is the characteristic length, Uo is the maximum 

inlet velocity, and v is the kinematic viscosity of the fluid. 

Second is Hartmann number, which is the square root of 

the ratio of Lorenz forces to viscous forces, 
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and the third is the interaction parameter, which is the 

ratio of Lorentz forces to inertia, 
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Here Lz, σe, ρ and B are the domain length in the direction 

of the magnetic field, electrical conductivity, mass density 

and the magnetic field strength, respectively. The 

interaction parameter can also be interpreted in terms of 

Ha and Re as N = Ha2/Re. Due to large Ha and N values 

in magnetic confinement fusion applications, the flow is 

quasi-2D with a core region where the velocity is constant 

along the magnetic field direction, and thin Hartmann 

layers at the walls perpendicular to the magnetic field 

direction. Under these assumptions, Sommeria and 

Moreau (Sommeria and Moreau, 1982) have derived a 2-D 

flow model by averaging the flow equations along the 

direction of the magnetic field, 

,
1

)( 2
uuuu

u

Re

H

Re
p

t





      (4) 

 

,0 u                                    (5) 

where u is the velocity averaged across the duct along the 

magnetic field and p is the static pressure. The parameter 

)/()/( 22  ezz LLanH  is a measure of the friction term 

representing the Lorentz force effect on the flow, n 

represents the number of Hartmann layers in any given 

cross-section of the duct, which is in this case n = 2. 

Velocity is zero at the interface between the wall and 

the fluid due to viscosity, hence a no-slip boundary 

condition (u = 0) is imposed. At the outlet boundary  

(x = b-e, -1.02a ≤ y ≤ 1.02a), a standard boundary 

condition is specified by setting a reference pressure value 

p = 0. 

At the inlet boundary (x = b-d, -1.02a ≤ y ≤ 1.02a), 

analytic velocity profile for fully developed laminar duct 

flow as shown in figure 2 has been imposed. This velocity 

profile reverts to the Poiseuille velocity profile as H 

approaches zero which represents non-MHD flow. The 

velocity profile becomes almost flat at high H except near 

the adjacent no-slip walls where Shercliff boundary layer 

with the thickness of δSh ~ 1/H 1/2 are located. 

 
Figure 2: Quasi-two-dimensional velocity profile at H as 

indicated normalized with maximum inlet velocity for 

fully developed duct flow. 

COMPUTATIONAL METHODS 

Polynomial Degree Study 

Flow around a 180-degree sharp bend is tremendously 

difficult to fully resolve, especially at large Re. A grid 

resolution study was performed to validate the numerical 

algorithm and to select appropriate meshes and element 

order in order to get a good optimal solution and 

computing time. The spatial resolution study varied the 

order of interpolation within each macro element of a 

mesh on domain length parameters from the mesh domain. 

The mesh is structured and refined in the vicinity of 

the inner wall of the sharp bend and in the downstream 

channel as shown in figure 3 in order to capture the 

intricate structure of the downstream flow. Computations 

have been performed with polynomial degrees varying 

from N = 4 to 8.  

Table 1 demonstrates the accuracy of the primary 

recirculation bubble length in the base flow computation 

as a function of polynomial order. The recirculation 

bubble length was calculated at Re = 500 and β = 1, 

steady state and has two recirculation bubbles at the 

downstream as illustrated in figure 4. Polynomial order  

B 
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N = 5 was chosen to be used hereafter considering the 

small relative error and moderate computing time. 

 

 
Figure 3: Details of mesh around turning part area with 

polynomial order N = 3. 

 
N A B LR1/a %diff LR1/a 

4 0 -4.80573 4.805727 0.03071 

5 0 -4.80716 4.807159 0.00092 

6 0 -4.8073 4.807295 0.00192 

7 0 -4.80725 4.807248 0.00094 

8 0 -4.8072 4.807203 - 

 

Table 1: Dependence of recirculation length on 

polynomial order. Parameter N indicates the independent 

polynomial order of the base flow. Separation point (A) 

and reattachment point (B) as indicated in figure 4 

computed on the mesh at Re = 300, H = 0 and β = 1. 

 

Code Validation 

The outflow domain length was tested to confirm that it is 

adequately long to ensure that the solutions are insensitive 

to the effect of the outflow. The primary recirculation 

bubble length was used as the convergence criterion in a 

convergence study with a range of the outflow length 20a 

≤ e – b ≤ 100a. It was found that an outflow length of e – 

b = 47a is sufficiently long as it yields only a 0.0002% 

error compared to the longest outflow length studied.  

 It is observed that the flow separation of the primary 

recirculation bubble starts from the sharp inner corner of 

the bend near location A in figure 4. Points of separation 

and reattachment are identified at location along the 

horizontal duct walls here 
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Figure 4: Separation (A and C) and reattachment (B and 

D) points. Reproduced from Zhang and Pothérat (2013). 

 

The distance between the separation (A and C) and 

reattachment points (B and D) describe the lengths of the 

primary and secondary recirculation bubbles, respectively. 

The code is validated by comparing the primary 

recirculation bubble length LR1/a obtained in non-MHD 

flow in the range of 100 ≤ Re ≤ 700 in the current study 

with the results acquired by Zhang and Pothérat (2013) 

and Chung et al. (2003) using regression analysis and only 

shows discrepancies as small as 2.2% and 0.2%, 

respectively (Figure 5). The tail of the curves from Zhang 

and Pothérat (2013) has small discrepancy due to the 

difference in resolution which leads to a formation of 

small scale vortices at far downstream in their study. 

 
Figure 5: Plot of the first recirculation bubble length 

(LR1/a) against Reynolds number (Re), comparing the 

present results to those of Zhang and Pothérat (2013) and 

Chung et al. (2003). 

 

RESULTS 

Numerical simulations were conducted at Hartmann 

friction parameters ranging from H = 0 to 500 with 

increment of 100, and at a range of Reynolds numbers, 1 ≤ 

Re ≤ 4000. Figure 6 shows the significant influence of the 

strong spanwise magnetic field on the liquid metal flow 

structure at the downstream part of the sharp bend, 

especially on the size of the recirculation bubbles. The 

length of the recirculation bubbles decrease as the strength 

of the magnetic field increases. This may at least in part be 

a consequence of the increase momentum in the side wall 

boundary layers as they become thinner with increasing H 

as discussed in figure 2. It is apparent that the secondary 

bubble disappears beyond certain value of H as can be 

seen from the effect of increasing H in figure 6 and figure 

7. The length of the bubbles were calculated by finding the 

distance between the separation and reattachment point 

which can be found using equation 6. 

 

(a) 

 
  

(b) 

 
  

(c) 

 
 

Figure 6: Streamlines of steady flow for Re = 700,  

(a) H = 0, (b) H = 100 and (c) H = 500. 

 

Parameter Space 

Figure 7 categorizes the flow in a range of Re with the 

effect of H into several regimes. The threshold Reynolds 

numbers for the formation of first and second bubbles 

captured by the numerical simulations are represented by 

ReR1 and ReR2, respectively. The critical Re at the onset of 

unsteadiness is denoted by Rec. The regime below the ReR1 

does not have any detectable separation bubbles as the 

magnitude of the adverse pressure gradient behind the 
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bend is not strong enough to invoke flow separation. The 

threshold Re for the first bubble to start to form is not 

significantly affected by the increase of H. However, the 

appearance of the second bubble is significantly delayed 

as H is increased. The relationship between ReR2 and H for  

β = 1 can be approximated by the polynomial equation 

25.1577725.50076.0 2

R2  HHRe ,      (7) 

with coefficient of correlation R2 = 0.9974. 

There are two thresholds of Re for the flow to 

transition to unsteady flow due to hysteretic behaviour in 

the flow. A stable steady-state solution was preserved by 

incrementally increasing Reynolds number to an unsteady 

threshold Rec_upper well above the threshold Rec_lower below 

which the unsteady solution branch reverts to steady flow 

with decreasing Reynolds number. These two critical Re 

are shown in figure 7 with the striped region denoting the 

range of Re over which hysteretic behaviour was observed. 

A representative flow within this region is shown in figure 

8.  

The gap between the Rec_upper and Rec_lower increases 

as H increased from H = 0 to 100 before decreasing as H 

increased further. The Rec_lower increases consistently with 

increasing H. At low H, Rec_upper  increases rapidly with H, 

before adopting a more gradual increase between H ≈ 90 

and 300. This is more apparent at H ≥ 317 where the flow 

does not have secondary recirculation bubble prior to the 

transition to unsteady flow. 

 

Figure 7: Thresholds of Reynolds number where the first 

bubble and the second bubble start to appear, (ReR1 and 

ReR2, respectively) and the flow transitioned from steady 

to unsteady (Rec) for β=1, 0 ≤ Re ≤ 4000 and 0 ≤ H ≤ 400.  

 Figure 9 shows the magnitude of vorticity for  

Re = 1500 across a range of H. The flow is strongly 

unsteady when there is no magnetic field effect (Figure 

9(a)). As the magnetic field is imposed, the vortices in the 

downstream duct are dampened due to the effect of the 

induced force opposing the motion of the flow in the duct. 

Figure 9(b) shows the dampened vortices in the 

downstream duct when H is increased to 100. As H 

increases to 200 and beyond, the flow becomes steady 

with decreasing size of bubbles when H is increased. 

 

 

(a) 

 

(b) 

 

Figure 8: Magnitude of vorticity contours in the 

hysteresis region with Re = 2000, H = 200, depicting (a) 

the steady and (b) unsteady solution branches. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

Figure 9: Magnitude of vorticity contours for Re = 1500 

in unsteady flow regime at (a) H=0, (b) H=100, and 

steady-state flow regime at (c) H=200, (d) H=300, and  

(e) H=400. 

The effect of gap ratio on the unsteady flow regime is 

now considered. From the magnitude of vorticity contours 

in unsteady flow shown in Figure 10, β = 0.2 produces 

very strong vortices behind the sharp bend compared to β 

= 0.5, 1 and 2. This smallest gap ratio shows that vorticity 

from both the inner and outer sides of the gap interact, 

vorticity from the shear layers is rolled into vortices which 

initiates unsteady flow immediately behind the bend. The 

flow at the smaller opening ratio is able to sustain the high 

magnitude of vorticity further downstream compared to 

the larger opening ratio. However, the unsteady flow in β 

= 2 is able to sustain the vorticity further compared to 1. 

This might be due to the effective opening ratio for β = 2 

is actually smaller compared to 1 as a consequence of the 

formation of a large recirculation bubble at the outer wall 

of the bend. Figure 11(b) demonstrates the presence of the 

huge recirculation bubble at the outer wall of the bend for 

β > 1 which limits the motion of the bulk flow from 

moving further horizontally, and instead starts to move 

upward and turns to the outlet earlier than β = 1. This 

bubble also narrows the opening for the bulk flow to pass 

through, acting like a slip wall instead of a non-slip 
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condition, which sees the bulk flow accelerates at the 

bend, hence creating a more unstable flow compared to  

β = 1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 10: The structure of the unsteady flow at  

Re = 1200 and H = 100 for (a) β = 0.2, (b) β = 0.5,  

(c) β = 1 and (d) β = 2 initiated from scratch. 

(a) 

 

(b) 

 

Figure 11: The flow streamlines at Re = 1200 and H = 

100 for (a) β = 1 and (b) β = 2.  

Recirculation Bubbles 

Figure 12 shows the length of the primary recirculation 

bubble as a function of Re at β = 1. LR1/a increases 

linearly with increasing Re for a constant H, and decreases 

with H when Re is fixed. Apparently when the secondary 

recirculation bubble starts to form further downstream, the 

growth of the primary recirculation bubble becomes 

slower with increasing Re. 

An optimization was performed to find the best 

exponents A, B and C to maximize the coefficient of 

correlation (R2) of a linear fit to LR1/a when plotted against 

ReAHBβC. The LR1/a data is collected in the range of 

Re<Rec_upper. The optimal exponents were determined to 

be A = 0.9568, B = -0.648 and C = -0.6005 with  

R2 = 0.9963. The relationship between the primary 

recirculation bubble length, Re, H and β is approximated 

by  

 2367.01713.0 6005.0648.09568.0

R1   HReL     (8) 

which is shown along with the collapsed data in figure 13. 

The collapse of data in equation 8 and figure 13 can 

be further improved by removing the region where the 

second bubble exists because the growth of the primary 

recirculation bubble is highly linear prior to the 

appearance of the second bubble. By limiting the range to 

Re ≤ ReR2, a linear trend line with a better correlation with 

the data of LR1/a can be obtained. The optimum exponents 

are A = 1.0003, B = -0.7483 and  

C = -0.6643 with improved R2 = 0.9991. These exponents 

are very similar to the fraction values of 1, -3/4 and -2/3, 

respectively. The universal relationship can thus be 

approximated by 

2091.02224.0 3/24/3

R1   ReHL         (9) 

which is depicted in figure 14. 

 

Figure 12: Primary recirculation bubble length in the 

function of Re for β = 1, 0 ≤ H ≤ 500 and 10 ≤ Re ≤ 3000. 

 

 

Figure 13: Collapse of primary recirculation bubble over 

ranges of Hartmann 100 ≤ H ≤ 500, 10 ≤ Re ≤ 3000 and 

opening ratio 0.3 ≤ β ≤ 1 when plotted against Re0.9568H-

0.648β-0.6005. 

CONCLUSION 

The liquid metal flow past a 180-degree sharp bend under 

a very strong spanwise homogeneous magnetic field has 

been studied. Due to the high values of N and H (N >> 1 

and H >> 1), the flow can be assumed to be quasi-two-

dimensional, thus SM82 model can be applied for the 

numerical simulations (Sommeria and Moreau, 1982). The 

recirculation bubbles created from the separation and 

reattachment flow caused by the abrupt geometry of the 

sharp bend are damped as H increased due to the 
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Hartmann braking effect. The thresholds of Re for the 

formation of primary recirculation bubble and secondary 

recirculation bubble were delayed as H is increased. The 

same trend has been seen for the critical Reynolds number 

for the transition from steady to unsteady flow. The effect 

of the magnetic field to the structure of the flow for 

different opening ratio, especially on the thresholds 

Reynold number between steady-state and unsteady flow 

regimes discussed in this study may be very useful in the 

optimization of heat transfer efficiency for MHD 

applications. 

 

Figure 14: Collapse of primary recirculation bubble over 

ranges of Hartmann 100 ≤ H ≤ 500,  

10 ≤ Re ≤ 2000 and opening ratio 0.3 ≤ β ≤ 1 when plotted 

against ReH-3/4β-2/3. This collapse excludes the regime 

where the second bubble exists. 
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