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ABSTRACT

Many applications in mineral and metal
processing involve complex flows of multiple
liquids and gases coupled with heat trans-
fer. The motion of the surfaces of the liquids
can involve sloshing, splashing and fragmen-
tation. Substantially differing material prop-
erties are common. The flows are frequently
complicated by other physical effects.

Smoothed particle hydrodynamics (SPH)
is a computational modelling technique that
is ideally suited to such difficult flows. The
Lagrangian framework means that momen-
tum dominated flows and flows with compli-
cated material interface behaviours are han-
dled easily and naturally. To be able to model
‘complex multi-physics flows, many aspects of
SPH need to be explored. In this paper we
describe developments that allow conductive
and convective heat transfer to be modelled
accurately for a sequence of idealised test
problems.

1. NOMENCLATURE

myp, Ty, Vi, Dy - Mass, position, velocity and
unit normal of particle b.

X = X — X, for any variable X.

h - Interpolation length.

¢s - Speed of sound.

Az - Particle separation.

n - Small parameter

L,V - characteristic length and velocity scales
P = P(p) - Pressure.

To - Reference temperature

U - Internal energy.

T = U/c, - Temperature

Re = pV L/u - Reynolds number

Ra = g AT L3/v a - Rayliegh number

Pr = v/« - Prandtl number

Nu - Nusselt number

a = k/pc, - thermal diffusivity

B - Coeff. of thermal expansion

W, v=p/p - dynamic & kinematic viscosities
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p - density,
¢, - specific heat,

g - Gravity
k - conductivity

2. OVERVIEW OF SPH

SPH is a Lagrangian method for solving
partial differential equations. Essentially, the
domain is discretised by approximating it
by a series of roughly equi-spaced particles.
They move (if fluid) and change their prop-
erties (eg. temperature) in accordance with a
set of ordinary differential equations derived
from the original governing PDEs. It has
been used highly successfully in astrophysical
applications for two decades (see the review
by Monaghan 1992a for details and refer-
ences). In recent years it has been developed
as a method for incompressible isothermal en-
closed flows (Monaghan 1992b). The mod-
elling of the boundary conditions represents
a significant challenge that was not present
in the earlier astrophysical calculations. Here
we extend the method to heat conduction and
then to coupled heat and mass flows.

SPH has a range of strong advantages in
modelling industrial heat and mass flows:

e The Lagrangian framework allows momen-
tum dominated flows to be easily handled.

e Complex free surface and material interface
behaviour, including break-up into frag-
ments, can be modelled naturally.

e Complicated physics such as multi-phase,
realistic equations of state, compressibility,
radiation, solidification and fracturing can
be added with comparative ease.

e Is easily extendible to three dimensions.
Much work is still required before the po-

tential of SPH for industrial CFD is realised.

3. THE SPH METHOD

The interpolated value of a function A at
position r using the SPH methodology is:

Alr) =) me %;1 W(r —rp,h), (1)
b




where the sum is over all particles b within
a radius 2k of r. Here W is a spline based
interpolation kernel of radius 2h. It mimics
the shape of a delta function but without the
infinite tails. It is a C? function.

The gradient of the function A is given by:
A

VAR =Y, m p—b VW —-r1hh), (2)
b b

Evaluating an interpolated product of two
functions is given by the product of their in-
terpolated values.

The following SPH equations are the equa-
tions of motion of the particles. They are
integrated using a predictor corrector scheme
described in Monaghan (1992b).

3.1 Continuity equation

Our preferred form of SPH continuity eq. is:

dcft“ = Zb: my (Vo —ve) VWa  (3)
It is Galilean invariant (since the positions
and velocities appear only as differences), has
good numerical conservation properties and is
not affected by free surfaces or density dis-
continuities (see Monaghan 1992ad&b). We
choose ¢; = 10V to ensure that the density
variations are less than 1%, so that the fluid
is effectively incompressible.

3.2 Momentum equation

A new form of the SPH momentum equa-
tion has been developed. It is:

dve P, P,
= e- o m[(G )

§ 4dpgfs  VabTab
Pa Pb (,U,a ‘l',ub) rib+772 ] va Wab (4:)
It has a more sophisticated viscous term than
the original one given by Monaghan (1992b),
involving an explicit viscosity which can be
variable. It also ensures that stress is au-
tomatically continuous across material inter-
faces. This allows multiple materials with
densities and viscosities varying by up to
three orders of magnitude to be accurately
simulated. Temperature dependent viscosi-
ties can also be used. Systematic tests of this
new form using a Couette flow are described
in Cleary (1996a). Calibration against the
known exact transient flow solution gives & =
4.96333. This value is independent of p.
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The timestep for the explicit integration is
limited by the Courant condition modified for
the presence of viscosity:

At = ming { 0.5k / (cs+ %) |G

3.3 Energy equation

A new form of the SPH energy equation
has been developed. It is:
dUa _ Z 4mb k‘a kb rab.vu Wab
&t 4 papy ket ke © T340

It has a more sophisticated conduction te@r)
than the original one given by Monaghan
(1992a), involving an explicit conductivity
which can be variable. It also ensures that
heat flux is automatically continuous across
material interfaces. This allows multiple ma-
terials with substantially different conductiv-
ities and specific heats to be accurately simu-
lated. Temperature dependent conductivities
can also be easily modelled.

The maximum timestep for the explicit in-
tegration of the energy equation is:

At=Cpeyhi/k @)
Detailed stability tests were performed for a

range of material parameters and showed that
¢ = 0.1 was sufficient to guarantee stability.

3.4 Equations of State

The pressure is given by the equation of
state. For these simulations either:

P=p or P=P0[(pﬁo)’y—l] (8)

is used, where v = 7, Py is the magnitude of
the pressure and po is the reference density.

3.5 Physical Boundaries

Solids are simulated in the same way as flu-
ids in SPH. The essential difference is that
the solid particles are fixed spatially and the
continuity and momentum equations are not
solved. Special provisions must be made at
the edges of solids in order for the motion of -

~ the adjacent fluid to be modelled correctly.

We use a potential based boundary force for
the particles on the edges of solids. This very
steep force field balances the fluid pressure
and prevents the fluid particles from enter-
ing the solid. The basic formulation of these
forces is described by Monaghan (1992b).
This has been modified in Monaghan (1995)



so that each boundary particle has a nor-
mal directed out into the fluid. This allows
the boundary force at any location between
boundary particles to be interpolated so as to
provide a smooth force field. The boundary
force produced by a line of boundary parti-
cles is then flat. This formulation allows the
boundary particle density to be the same as
in the solids and the fluids and eliminates the
rippled force field that is produced by a line of
point sources. Effectively any shape bound-
ary can now be easily simulated.

3.6 Thermal Boundaries

The default thermal boundary condition is
adiabatic. Any SPH particles on a surface
(whether solid or liquid) are effectively adia-
batic, since there are no particles beyond with
which they can exchange energy. This is an
automatic natural boundary condition.

Isothermal boundaries must be part of a
solid and are identified by a tag. They are
implemented simply by not changing the in-
ternal energy of these particles.

Heat fluxes through the isothermal bound-
aries can be calculated either directly, by es-
timating the temperature gradients, or by
calculating the internal energy that needs
to be added or removed from the bound-
ary to maintain a constant temperature. In
both cases the inward normal vector at each
boundary particle location must be specified.
At corners, the normal is chosen to have an
orientation half way between the the normals
of the particles on either side.

The direct lux estimation involves evaluat-,

ing the temperature gradient at each isother-
mal boundary particle location and summing:
1 re5-Va Wap
¢, = Pa Z 2y ky Top Tap-Na rgb + 772 (9)
" Alternatively, the heat flux can be estimated
from the energy added/removed from the
boundary particles in a timestep:

D, = my T /A (10)

where 7, is the gradient of thermal energy per
unit mass, and summing over the boundary.

The thermal energy gradient depends on
the smoothed density of the particles near
the boundary. The present formulation of the
SPH density does not give quite the right val-
ues near the boundaries. This does not af-
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fect the heat flows near adiabatic boundaries,
but does affect the flow through isothermal
ones. A density correction has been formu-
lated that leads to very accurate fluxes. This
correction and a detailed description of the
thermal boundary conditions is contained in
Cleary and Monaghan (1995).

3.7 An example configuration

Figure 1 shows a typical set up of particles,
physical and thermal boundaries and normals
for natural convection in a square cavity.
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Figure 1: Setup of particles and normals

The particles are set up as a 20 X 20 grid.
The outside boundary particles are stationary
and form the solid container. The normals
used in calculating the flat boundary force are
shown by the lines starting on the outer par-
ticles and directed into the container. The
normals of the corner particles are directed
inwards at 45° angles and have the effect of
rounding them slightly. The internal particles
are fluid particles and are free to move during
the simulation. The left and right boundaries
are isothermal with temperatures T, and T}
and are shown as dark grey. The top and
bottom of the container are adiabatic. They
and the fluid particles have temperature Tp
and are shown as light grey. There is no in-
compatibility in the multiple roles of the nor-
mals in the calculations of the heat fluxes and
boundary forces.

4. CONDUCTION

Several test problems follow that demon-
strate the accuracy and versatility of the SPH
approach for conduction problems. These
and many other tests are described in detail



in Cleary (1995a&b), Cleary and Monaghan
(1996) and Cleary (1996b).

4.1 Discontinuous Initial Temperature

Conduction in a homogeneous slab (with
k=1, ¢, =1, p=1000) with discontinuous
initial temperature is modelled using an 80X
20 array of particles. Initially, the left half is

cold (T;=0) and the right half is hot (T= 1).
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Figure 2: Temperature préﬁles a) early b) late
The exact solution for this configuration is:
_ Erfc (2'/at) ifz<z,

T=1I { 1+ Erf(2'/at) f2>2nm (1)
where T, = (Tr — T1)/2, &m is the location
of the initial temperature discontinuity and
¢! = 2 — z,,. Figure 2 shows the temperature
profiles across the slab early and late in the
conduction process. The temperatures of the
particles are shown as dots and the exact so-
lution is given by the curve. Even in the early
stages when the temperature gradient is very
high and there are only four particles to re-
solve it, the SPH solution is very accurate.
Frame b) shows that the SPH profile tracks
the transient evolution very closely. The av-
erage errors at each time (even at this modest
resolution) are less than 0.3%.

4.2 Discontinuous Material Properties

An essential requirement for industrial ap-
plications is to be able to model conduction
across interfaces of materials with different
thermal properties. Figure 3 shows two ex-
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Figure 3: Temperature profiles a) k./k; = 3
and p,/p; = 0.5 b) air (left) and water (right).

amples using the same configuration, except
now the materials on the left and right have
different properties. z=0.5 is now a material
and temperature discontinuity. The points
show the SPH temperatures and the curves
show the corresponding exact solutions. The
temperature profiles are shown at early times
when the errors are largest. Frame a) shows
the case for modest differences in the density
and conductivity and frame b) shows the case
for air and water. Both solutions are very ac-
curate. This demonstrates that the flux con-
serving form of the energy equation (6), does
ensure high accuracy even for density ratios
as high as a thousand.

4.3 Temperature dependent &k

Using the same geometry as above we
model the conduction in a material with
highly temperature dependent conductivity:

k(T) = e*T. (12)

Figure 4 shows the SPH solution (dots) and
a high resolution finite element solution using
Fastflo (curve) early on and at steady state.
The profiles match extremely closely at all
times with an average error of 0.1%.

=€

4.4 Sinusoidal temperature profile: 1D

Conduction is modelled in a homogeneous
square slab (with k =1, ¢, = 1, p = 10) with
an array of 40 x 40 particles and an initial si-
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Figure 4: Temperature profiles a) early b) late

nusoidal temperature distribution. The exact
solution is:

w4 2
T("E) yat) = sin -ﬂ-—:L— e—(ﬂ'/l) at , (13)

l
where [ is the length of the block. Figure 5
1 E — T 1]
5 0.5 R 1
2 L |
8
0 . . . . i . . ; . L]

|

0 0.5 1
X

Figure 5: Sinusoidal temperature profile.

shows the SPH and exact solutions midway
through the simulation. They compare very
well. This is typical of the accuracy through-
out the simulation. The difference is largest
near the center. This results from the heat
transfer along the adiabatic top and bottom
edges being marginally slower than through
the middle of the slab. Figure 6 shows the ex-
act flux (solid curve) and SPH fluxes through
the isothermal sides as a function of time us-
ing the density correction. The fluxes are
more accurate for the internal energy method
of calculation (upper dotted curve) than for
the direct method (lower dashed curve) with
maximum errors of 1.4% and 3.1% respec-
tively. Without the density correction the er-
rors are larger at 4.0% and 3.2% respectively.
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Figure 6: Total heat flux absorbed by an

isothermal edge.

In general, we have found that the internal
energy method is the more accurate one and
the correction improves the estimate by im-
proving the accuracy of the contributions of
the particles near the corners.
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Figure 7: Variation of heat flux along edge.

Figure 7 shows.the spatial variation of the
flux along an isothermal edge at the same
time as the temperature profile shown in Fig-
ure 5. The point fluxes (dots) are very close
to the exact value (solid line) except near the
ends. The error at the ends is around 7%
and results from the unphysical intersection
of an adiabatic and an isothermal boundary.
SPH, being a very physically based modelling
method, smooths this discontinuity slightly.
The errors at the ends are the dominant
sources of error in the total heat fluxes. As
the simulation resolution increases this error
becomes decreasingly important and the total
fluxes become more accurate.

4.5 Conduction in a Disc: Correct setup

In previous tests, the edges of the parti-
cle lattice were aligned with the edge of the
block. In general this is not the case. So how
should we construct the boundaries in such

" cases? Consider heat conduction in a disc.
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The naive set up is to take all the particles
on the lattice that lie within the circle and to
tag the outermost ones as isothermal bound-




ary particles. Such an approach actually pro-
duces very poor results. An unphysical tem-
perature discontinuity forms just inside the
isothermal particles as the boundary behaves
partially isothermally and partially adiabati-
cally. The problem is caused by the uneven
spacing of the boundary particles. Nearby in-
terior particles can effectively ‘see’ through
the gaps between the isothermal boundary
particles and behave partially adiabatically.
The local boundary behaviour then depends
on the precise details of the particle locations.
This is exaggerated by the somewhat erratic
directions of the boundary normals.

"We have devised simple rules for setting up
both isothermal and physical boundaries:

e Boundaries should be set up separately
from the interior particles unless they align
with the particle lattice.

e Boundary particles should be placed upon
smoothly varying curves and should be
equally spaced using the interior particle
spacing Az.

e The boundary normals should actually be
perpendicular to the underlying boundary
curve leading to smooth variations in the
orientations of the normals.

e Interior particles within eAz of the bound-
ary should be omitted.

feetsrres

Figure 8: Good set up for a disc

Figure 8 shows the set up for the disc using
the rules above. The isothermal boundary
particles are grey and form a circle. There
are only 30 particles across this disc, but the
heat conduction is very accurate. Figure 9a
shows the temperature profile when the cen-
tral temperature has declined by half. The
SPH points are almost indistinguishable from
the exact solution (the curve). The average
error at each timestep is less than 0.5%. Tests
indicate that the optimal value of € is 0.42 and
is good for most smaller values. If €> 0.42
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Figure 9: a) Temperature profile b) Flux.

the interior particles have insufficient thermal
contact with the boundaries and adiabatic
discontinuities ensue. Figure 9b shows the
time evolution of the total heat flux absorbed
by the boundary. The results for both SPH
flux calculation methods (dashed and dotted
curves) are very close to the exact heat flux
(solid curve). The heat flux is much more sen-
sitive to errors than the temperature profile,
so this demonstrates the high accuracy that
can be achieved for SPH simulations of con-
duction, even with modest resolution, when
using our rules for setting up the boundaries.

Similar tests were performed for heat trans-
fer in a slab that was inclined to the lattice
of particles. The errors were only marginally
higher than for the case where the heat trans-
fer is aligned with the lattice.

SPH particles in fluids do not remain in the
initial lattice structure but move to a quasi-
disordered state. The interior particles of
the earlier slab were allowed to become disor-
dered using a fluid simulation and were then
fixed. The accuracy of heat conduction in this
disordered solid was found to be comparable
to that using an aligned lattice.

6. NATURAL CONVECTION

The Boussinesq approximation is easily im-
plemented in SPH by replacing the body force
g in equation (4) by g (T — Tp). We show
two examples using air, which has Pr=0.71.



6.1 Flow in a Square Cavity

Natural convective flows in a differentially
heated square cavity (shown in Figure 1) are
modelled for a range of Ra. Figure 10 shows

(a)

®)

=

©

Figure 10: a) Ra=100, b) Ra=10%, ¢) Ra=10°

the isotherms for a range of Ra with SPH so-
Jutions on the left and finite element solutions
from Fastflo on the right. The solutions are
very close for Ra< 10% For Ra= 10% there
are slight differences. The FE mesh had 60
nodes across the cavity and was graded geo-
metrically towards the boundaries. The SPH
solutions also used 60 particles across, except
for Ra= 10% which had 90 particles. The par-
ticles are equi-spaced so for the same parti-
cle/node numbers the SPH solution has less
effective resolution in the important bound-
ary layers. For low and moderate Ra this is
sufficient to give excellent results. For higher
Ra, the results deteriorate. To have the same
resolution in the boundary layers (which de-
termine the magnitude of the driving force
for the convection and therefore the overall
flow structure) we would require 150 parti-
cles across the cavity. This could be overcome
by developing an SPH variant with a spatially
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dependent h. Overall, the SPH method seems
to give equivalent results to that of finite ele-
ments when comparable resolution is used in
the boundary layers. Figure 11 shows that

T T T T T T LB e e a e |

Nusselt Number

o — SPH

& — Fastflo

_Tul siot] sl il N

100 1000 10* 10°
Rayleigh Number

Figure 11: Nu vs Ra for the cavity

the SPH and Fasiflo Nu are within a few per-
cent for low and moderate Ra. The flux is
most sensitive to the adequacy of the resolu-
tion near the walls and so the SPH Nu begins
to diverge for the higher Ra. Using more par-
ticles would improve these Nu predictions.

6.2 Rayleigh-Benard Convection

Prediction of instabilities is important so
we simulate Rayleigh-Benard convection be-
tween a lower hot plate and an upper cold
plate. We use periodic boundaries in the flow
direction. Figure 12 shows the steady flow
for a control volume with aspect ratio 1.5 at
Ra= 2.4 x 10%. Frame a) shows the parti-
cles and their velocities, shaded according to
their temperature with light grey being hot.
There are two very clearly defined recircula-
tion cells, with the hot air rising in the left
jet and cold air descending in the right one.
The isotherms are shown in b). Conduction
from the boundaries produces horizontal hot
and cold boundary layers adjacent to the bot-
tom and top surfaces respectively. For Ra
below a critical value Ra,, the conduction
regime is stable and the final state is station-
ary with a constant vertical temperature gra-
dient. For higher Ra, the flow is unstable and
the isotherms buckle. This leads to a multi-
cell convection pattern. The choice of control
volume aspect ratio determines the wavenum-
ber of the instability and therefore Ra.. For
this case, SPH does predict the existence of
an instability with a conduction regime below
Ra, and a convection one above, where our
Ra, =~ 2.15x 10% We find 4000 < Ra, < 5000
for the most unstable mode (aspect ratio 2).
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Figure 12: a) Rayleigh-Benard convection a)
particles with velocity arrows b) isotherms.

11. CONCLUSIONS

For heat conduction:

e SPH can accurately predict high tempera-
ture gradients with only small numbers of
particles. The full transient evolutions are
very accurate. Furthermore, any errors de-
cay faster than the heat diffuses making the
method extremely robust.

e Heat flux conservation across interfaces
with different materials properties on either
side is built into the SPH energy equation
and ensures accurate temperature profiles
even when the variations are substantial.

e Transient heat conduction and steep tem-
perature gradients resulting from strongly
temperature dependent conductivities are
well predicted.

e Rules were developed for construction of
arbitrary shaped physical and isothermal
boundaries that ensure accurate solutions.

e Heat conduction is as accurate when the
heat transfer direction is not aligned with
the particle lattice as when it is.

e Conduction has been accurately modelled
in a wide variety of geometric shapes.

o Heat conduction in solids with disordered
particles is also very accurate.

For natural convection:
e A simple Boussinesq body force term is eas-
ily implemented and gives good results.
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e The accuracy of the results is dependent on
the particle spacing in the boundary layers.

e SPH predictions of flow in a cavity are good
when sufficient resolution is used in the
boundary layers. Uniform particle spacing
makes high Ra calculations expensive.

e Rayleigh-Benard instabilities are predicted
by SPH. The wavenumber and Ra, are de-
termined by the width of the control vol-
ume leading to higher values than that for
the most unstable mode occuring between
infinite parallel plates.
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