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ABSTRACT

Oscillating free surfaces or interfaces occur in
many metallurgical processing operations. One
example is the Hall cell used in the production
of aluminum where the interface between the
molten salt electrolyte and aluminum is
susceptible to surface waves. A second
important example is the free surface of the
metal in the casting of aluminum, or the flux-
metal interface in the continuous casting of
steel. Surface waves in these casting operations
can cause periodic irregularities in the surface
of the cast metal. The paper examines the
numerical solution of the governing equations
for a free surface or liquid/liquid interface. 2D
solutions for the behaviour of an unconstrained
(in the vertical direction) surface are presented,
together with the results of calculations where
electromagnetic forces act on the melt through
the effects of an imposed electromagnetic field.
The last calculations are self-consistent in that
the effect of the surface shape on the
electromagnetic field is allowed for.

1. INTRODUCTION AND OBJECTIVE

Over one million tons of aluminum are
solidified each year by electromagnetic casting
(EMC). As illustrated in Figure 1, the
technology is one where solidification proceeds
without any contact between the molten metal
and a mold. Instead, the liquid aluminum is
supported from below by the metal that has
already solidified, and on the sides by
electromagnetic forces. These forces arise from
the interaction between currents induced in the
aluminum and a magnetic field. The field is
created by alternating current (a few kiloAmps
at a few kHz) flowing in an inductor
surrounding the aluminum pool. A "screen" or
"shield" is partly interposed between the
inductor and metal so as to modify the magnetic
field (Evans, 1995).
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Figure 1. Schematic cross-sectional view of an
electromagnetic caster.

One of the principal advantages of EMC is that
the resulting ingot usually has a very smooth
surface. This is in contrast to the ingots
produced by the rival semi-continuous casting
technology "direct chill" (DC) casting. In DC
casting solidification occurs with the aluminum
in contact with an actual mold (water-cooled
copper) and the ingot must be machined
("scalped") after casting to yield a surface
smooth enough for the subsequent rolling
operations. The loss of production and expense
associated with scalping is significant and their
avoidance may justify the extra capital and
operating cost of EMC. Such justification is
lost, however, if the EMC ingots require
scalping and the smoothness of the surface of
the metal in EMC is therefore of interest.

One irregularity frequently seen on EMC ingots
is a surface wave, frequently extending around
the whole ingot with the direction of the wave
vector vertical. A ready explanation for this
wave is that it is caused by oscillations in the




surface of the liquid pool. Because the liquid is
confined only by "soft" electromagnetic forces,
outward and inward bowing of the liquid
surface at the solidification line causes such
waves on the surface of the solidified metal.
There are obvious sources of disturbance of the
liquid metal pool (jerky descent of the
hydraulically supported bottom block below the
ingot, or building vibration) but such sources
have been largely eliminated. In a recent paper
Deepak and Evans (1995) carried out a linear
perturbation analysis which suggested that the
electromagnetic field itself could destabilize the
liquid metal surface above a critical magnetic
field strength. That strength was comparable
with that encountered in actual casters.

The objective of the research described in this
paper was to further examine the stability of a
liquid metal pool in an alternating magnetic
field by a combination of experiment and
numerical calculations. The results include the
more general case where there is no magnetic
field and the decay of surface oscillations is of
interest.

2. NUMERICAL STUDIES
2.1 Approach

For calculation of the dynamic behaviour of the
metal pool in the presence of an
electromagnetic field, solution of Maxwell's
equations (coupled with Ohm's law) for the
electromagnetic field, and the Navier-
Stokes/continuity equations for the flow are
required. The solution for the field and flow
must be closely coupled because changes to the
shape of the free surface cause changes in the
electromagnetic field which then alter the
forces on the melt and its surface shape and
flow.

The present calculations treat a cylindrical melt
in an axisymmetric magnetic field (see Figure
2), undergoing oscillation of its upper free
surface so that the surface remains axi-
symmetric. Space limitations preclude a full
description of how Maxwell's equations were
solved but that description is found in the thesis
on which this paper is based (Kageyama, 1995).
The equations were solved in terms of a vector
potential using finite differences on a body-
fitted co-ordinate system. A boundary condition
for the vector potential was first computed on
an imaginary boundary somewhat outside the
melt by the "method of inductances" (solution
of Maxwell's equations in integral form). The
imaginary boundary was positioned so that melt
surface perturbations did not alter the vector
potential on the boundary significantly.
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The Navier-Stokes and continuity equations
were solved in their instantaneous (rather than
time-averaged) form following the approach of
Kawamura et al. (1986). Free-slip boundary
conditions were imposed on the top surface of
the melt with no-slip boundary conditions
imposed on the melt-container interfaces at the
bottom and sides (simulating the conditions of
the experiment, rather than those of EMC).
Pressure in the liquid just below the free
surface was adjusted to allow for surface
tension. The height of the free surface (h) was
computed from the horizontal velocity (u) and
vertical velocity (w) at the free surface by
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Figure 2: Geometry of experiment. and
mathematical model; boundary condition
employed for vector potential

Various finite difference schemes (in the
moving, body-fitted co-ordinate system) were
used to solve the fluid flow equations. The
mesh used was 50 by 25 (the latter being the
vertical direction). As reported below, all




schemes suffered from numerical damping and
this was revealed by testing each by computing
the oscillation of an inviscid fluid in the
absence of an electromagnetic field. The
Navier-Stokes equations were solved explicitly
with a Poisson equation for pressure arising
from the continuity equation. The pressure-
smoothing technique of Sotiropoulos and
Abdallah (1991) was employed. Equation (1)
was solved in explicit finite difference form
using upwind differences for the convective
term. Noise was minimized by using a filtering
technique of Miyata and co-workers (1987).

2.2 Numerical results

The oscillation of the free surface of a
cylindrical melt is a classical problem and the
eigenfrequencies can be calculated from (Lamb,
1932):

(271‘-9"1,11)2 = (Pg + O's(&rl—)z) % tanh( 2,,1%)

where Qm n is the eigenfrequency, m and n are
the azimuthal (circumferential) and radial wave
numbers, respectively, r and H are the radius
and depth of the pool, oy the surface tension, p
the liquid density and Ay the nth zero of the
first derivative of the mth order Bessel function
of the first kind. These eigenfrequencies are
given in Table I for a mercury pool of 25 mm
depth and 200 mm diameter that was the
subject of the experimental and numerical
studies.

Table I
Eigenfrequencies of the mercury pool

m n=1 2 3 4

0 2.67 409 510 593
1 1.41 3.41 461 552
2 2.21 397 504 5.9
3 287 443 542 626
4 340 484 577 6.9
5 3.86 519 610 692
6 426 552 642 724

To test the numerical scheme, and its variants,
the oscillation of a free surface which was
initially deformed downward by 2.5 mm, to
yield the shape of an inverted cone, was
computed with the electro-magnetic field and
viscosity set to zero. Physically, such a pool
should oscillate indefinitely with constant
amplitude. Figure 3 shows the computed
oscillations at the pool center for a first order
upwind scheme. The oscillations have a clearly
defined frequency of 2.7 Hz which matches
well with the first eigenfrequency for m=0 (i.e.,
a radial wave) in Table 1. Unfortunately the
oscillations are decaying so this scheme
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displays numerical damping. All numerical
schemes tried at the time of writing display
numerical damping, some worse than that seen
in Fig. 3. The reduction ratios for the amplitude
at 10 seconds are given in Table II. By this
criterion, the third order upwind scheme is the
most accurate. The third and fourth order
schemes in Table II are special cases of the
equation provided by Kawamura et al. (1995).
That equation provides a parameter (o) which
may be set to yield various schemes (e.g., o=1
is equivalent to third order schemes). Attempts
to use a=6 or 12 did not eliminate numerical
damping. Nor was the damping eliminated by
turning off Miyata's noise filtering technique.
[Similar numerical damping was found when
the commercial code FLUENT 4.32 was
employed on this problem with first or second
order upwind differencing.]

Table 11
Reduction ratio for various numerical schemes
(wave amplitude at 10 sec./initial wave

amplitude)
Scheme Reduction Ratio
First order 0.795
Second order 0.829
Third order 0.87
Fourth order 0.822
o=6 0.757
o=12 0.658

Calculations were then performed for the case
of an applied electromagnetic field
(corresponding to the experimental case with an
inductor current of 400 Amps) and physical
properties set to those of mercury. As will be
seen in the next section, the actual metal
oscillates with frequencies close to the classical
eigenfrequencies and amplitude that appears
steady. The results of applying the third order
upwind scheme are seen in Figure 4. In these
(and subsequent) calculations the current was
turned on over a three-second interval. The
point in question is at the center of the top
surface and is displaced upward by the pinching
effect of the electromagnetic forces. The
computed amplitude is increasing with time
and, by the end of 20 seconds is, at + 4 mm
greatly in excess of the experimental value of
roughly + 0.2 mm. It is concluded that the third
order upwind scheme is displaying numerical
instability in these calculations although the
2.7-Hz classical eigenfrequency is displayed by
the results. The fourth order upwind scheme has
similar difficulties. In contrast, Figure 5 shows
a steady (but modulated) oscillation of the
surface with an amplitude close to the
experimental value. These computations were
carried out with the Kawamura scheme and
o=6.
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Figure 3
Computed oscillations of center point of pool surface for no electromagnetic field and inviscid liquid
(first order upwind scheme).
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Figure 4 l
Computed behaviour of center point of pool surface for properties of mercury and with field turned on ‘
over first three seconds and thereafter (third order upwind scheme).
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Figure 5
As in Figure 4 but with the scheme of Kawamura, Takami and Kuwabara (1986) and 0=6.

. 3. EXPERIMENTAL MEASUREMENTS
AND RESULTS

Figure 6 depicts the mercury pool and laser
vibrometer used in the experiment. The
mercury is surrounded by an inductor driven by
a 3-kHz power supply. Details of the apparatus
can be found in the thesis of Kageyama (1995),
as can additional experimental results.

With no magnetic field applied the meniscus
showed oscillation of +0.1 mm with a
frequency (2.7 Hz) corresponding to the first
radial mode of Table I. These oscillations were
probably due to building vibration or
disturbance caused by flow of water in the
cooling system. Oscillations at the center of the
pool are seen in Figure 7 for the case where the
inductor current was set to 400 A. The
oscillations are seen to have increased to +0.2
mm and display some modulation. The power
spectrum of the surface oscillations can be seen
in Figure 8 and again the classical first radial
mode oscillation around 2.7 Hz is dominant.
Oscillations increase yet further on increasing
the current, reaching approximately +0.5 mm at
500 A.
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4. CONCLUDING REMARKS

The flow and oscillation of a metallic pool in an
electromagnetic field have been examined. As a
preliminary part of the study the behaviour of
an inviscid cylindrical pool with the field turned
off has been computed using various
differencing schemes. All schemes and a
commercial code showed, to greater or lesser
degree, numerical damping. In the presence of
the magnetic field one of the schemes showed
stability and yielded an oscillation amplitude
close to that determined in the experimental
part of the investigation. In all cases the
dominant frequency was the eigenfrequency
anticipated from the classical theory of

oscillation of a metal pool. It is concluded that

an alternating magnetic field can destabilize a
molten metal pool. A tentative explanation for
the oscillations is that the electromagnetic field
causes turbulent flow in the melt and the
turbulence then excites the eigenfrequencies of
the melt.
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Measured oscillations at center of mercury pool for an inductor current of 400 Amps.
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Figure 8
Fast Fourier transform of the oscillations of Figure 7.
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