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ABSTRACT

Spiral concentrators are used in the fine coal
and mineral processing industries to segregate,
by gravitation, particles on the basis of density
and size. To optimise the spiral geometric
parameters towards enhanced performance, the
past decade has seen developments in
theoretical ~ predictions of spiral flow
characteristics. To this end, this paper uses
Computational Fluid Dynamics (CFD) analysis
to simulate fluid and dilute particulate flows on
one spiral unit used for fine coal processing.
The free-surface Volume-of-Fluid (VOEF)
algorithm, RNG k-¢ turbulence model and
Lagrangian method have been used for this
purpose. Results have been compared with
primarily an associated experimental program,
and the present model forms the basis for
future examination of the two-way fluid-
particle coupling processes and inter-particle
effects.

1. INTRODUCTION

The generic geometry of spiral concentrators
consists of an open trough that spirals
vertically downwards in helix configuration
about a central axis. Employed in the fine coal
and mineral processing industries, a slurry of
fine particles (75 - 3000 pm) is fed to the top of
the spiral and, as it gravitates downwards,
particles are segregated radially across the
trough by the centrifugal force. Since their
introduction to Australia in the 19407,
evolution of the design has been almost
exclusively based on empirical development of
the appropriate geometry.  However, this
approach has proven to be expensive and time-
consuming. The past decade has therefore seen
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developments in theoretical flow
investigations, of which CFD has particular
potential benefit because the detailed flow and
particle interactions in complex geometries can
be solved using only the fundamental
governing flow equations.

Following Wang and Andrews (1994), who
used CFD to determine the flow fields for
simplified rectangular spiral sections, Jancar et
al. (1995) examined the fluid flow on the coal-
concentrating LD9 spiral using their locally
developed code. As part of an ongoing
research program, the present paper further
examines the flow on the LD9 unit using,
instead, the commercial CFD program,
FLUENT, and the more robust Volume-of-
Fluid (VOF) method for modelling the free
surface transport. This paper extends the
preliminary qualitative fluid flow study of
Matthews et al. (1996) in which only laminar
solutions were presented. Quantitative fluid
flow predictions have now been achieved using
the RNG k-¢ turbulence model and particulate
flow analyses have also been conducted at
dilute concentration.

2. MATHEMATICAL FORMULATION
2.1 Fluid flow

Studies by Holland-Batt (1989) and Holtham
(1990) have demonstrated that spiral
concentrator flows possess a free-surface, have
shallow depths of typically less than 1 cm and
display laminar to increasingly turbulent
behaviour radially outwards across the trough
with velocities reaching 3 m/s. A secondary
circulation current in a plane perpendicular to
the mainstream flow direction, induced by the




spiral curvature and resultant centrifugal force,
travels outwards near the free-surface and back
inwards towards the central column near the
trough base. To model this flow, the fluid
phase is considered Newtonian, to possess
constant physical properties and to be governed
by the Reynolds-averaged turbulent Navier-
Stokes equations. The steady-state equations
for the conservation of mass and momentum in
generalised curvilinear form, are respectively
given by:
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where py is the fluid density, fy the effective
(molecular y plus turbulent p,) viscosity, P
the static pressure, and u and g; the mean
velocity and gravitational acceleration,
respectively. To consider the effects of
turbulence, the eddy viscosity concept and
dynamic renormalisation group theory (RNG)
based k-g¢ turbulence model (Yakhot and
Orzag, 1986) have been employed. This
model contains very few empirically
adjustable parameters and is therefore
applicable to a wide range of flow situations.
The local level of turbulent kinetic energy (k)
and energy dissipation rate (¢) are solved
using the following transport equations:
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where P is the turbulence production and R an
additional rate of strain term. According to the
RNG theory, the constants in the turbulent
transport equations are given as C; = 1.42 and
C, = 1.68. The variable ¢ is solved throughout
the domain and takes into account both the high
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and low Reynolds number regions and effects
due to streamline curvature.

The free-surface transport has been modelled
using the Volume-of-Fluid (VOF) method (Hirt
and Nichols, 1981). In this technique, the
interface between water and air is tracked on a
fixed mesh so that the interface does not
generally coincide with a grid line. A function
F is defined whose value is unity at any point
occupied by fluid and zero otherwise. The
average value of F in a cell represents the
fractional volume of that cell occupied by the
fluid with values between zero and one
containing the free-surface. Evolution of the F
field is governed by the following transport
equation:
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After the distribution of F has been determined,
the interface in each cell is reconstructed from
the cell value and local gradient of F. The
velocities and pressure in cells which contain
the interface are then assigned to ensure
satisfaction of the complete free surface stress
conditions (Nichols and Hirt, 1971). Because
the flow field calculations are not coupled with
determination of the free-surface location, the
VOF method provides a more stable alternative
to the adaptive-grid formulation used by Jancar
et al. (1995). The model of Jancar has had
difficulty in attaining spiral flow solutions with
high free-surface curvature and hence appears
somewhat limited for predictive design
purposes (Matthews et al., 1996) .

To solve (1) to (5), appropriate boundary
conditions must be employed in the flow
domain. At the spiral inlet all fluid velocity
components have been specified and the
distribution of F defined to give a desired flow
rate. At the exit, mainstream gradients of the
velocity components have been set to zero and
no-slip conditions imposed at solid surfaces.
The non-equilibrium wall function has been
used to link the flow with the near wall profiles
of velocity and turbulence parameters.

2.2 Particulate flow

In this paper, the Lagrangian method has been
used to simulate the particulate flow at dilute




concentration on the LD9 spiral. The trajectory
of an individual dispersed particle is calculated
by integration of the force balance on the
particle to equate its inertia and, in curvilinear
non-orthogonal form, this balance may be
expressed by (Maxey and Riley, 1983):
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where Re, is the particle Reynolds number, D,
the particle diameter and Cp a drag coefficient.
The forces on the right-hand-side of (6)
represent respectively, the pressure gradient in
the fluid, “virtual mass” required to accelerate
the fluid surrounding the particle, Stokes
steady-state viscous drag, and buoyancy due to
gravity. To predict the particulate dispersion
due to turbulence and crossing trajectory effect
due to gravity, a stochastic Continuous Random
Walk model (Thomson, 1987) has been used.
Preliminary simulations of the particle-wall
interaction have used a simple collision model
with a restitution coefficient of 1.0 assumed.

3. NUMERICAL PROCEDURE

The LD9 computational domain uses a single
block, structured, curvilinear 3D grid. For
computing purposes, the spiral has been
divided into 35° sections (Figure 1) with the
computed outlet solution specified as the inlet
conditions for the next downstream sector. The
domain is bounded by four walls and the flow
is essentially a duct flow that includes an
interface between water and air. The model
irrelevantly calculates the air flow solution but
because grid cells are stretched in the depth-
wise direction toward the spiral base, the
computing time to do this is minimised.

Equations (1) - (5) have been solved using a
finite volume method on a non-staggered grid.
The primitive flow field and VOF distributions
were solved implicitly in which the convective
first derivatives in (2) and (5) were calculated
using a second-order QUICK discretisation
scheme; three point symmetrical formulae were
used to discretise the second derivatives. The
velocity fields were determined from (2) using
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the iterative Line-Gauss-Seidel scheme and a
velocity potential correction introduced to
satisfy continuity (1) and to upgrade the
pressure field using the SIMPLE algorithm.

The LD9 computational domain
with reduced cells for clarity

Figure 1

After the volume fraction F had been
calculated and the free surface position located,
boundary conditions at the interface were used
to determine the pressure and velocities within
the surface cells. The primitive flow variables
were then updated and the process repeated
until neither the flow field nor the free surface
profile changed. For this purpose, all residuals
were reduced to below 3x10™ before transfer of
the outlet results to the inlet plane of the next
downstream sector. Typically, CPU times of
four hours were required to reach the fully-
developed state and a further two hours needed
to transfer the results downstream on a
Hewlett-Packard K210 Unix server.

Use of only the QUICK scheme in the solution
process would have led to progressive smearing
of the F function and loss of definition of the
interface by dissipative and dispersive terms
occurring in the truncation error. Accordingly,
the Donor-Acceptor method (Hirt and Nichols,
1981) was used to compute F explicitly using a
time-marching scheme after convergence in
each sector. Typically, 50 time-steps of 0.001s
were needed for the interface to be convected
from the inlet to outlet plane. In the Donor-
Acceptor method, sharper resolution is attained
by limiting the amount of fluid that can be
convected across a cell face to the minimum of
two values: the filled volume of the phase in
the donor cell; or the free volume available in
the acceptor cell.




The trajectories of individual particles were
calculated in the fully-developed fluid flow
domains for six complete spiral turns. Step-
wise integrations over discrete time-steps were
conducted using the Runge-Kutta method.
Integration of (6) yielded the velocity of the
particle at each point along the trajectory and a
further integration in time predicted the
trajectory itself. The fluid velocity at the
precise particulate position, estimated by a
Taylor series expansion about the value stored
at the cell-centre, was employed. Instantaneous
values of the fluid velocity were also used and
the trajectories of 100 particles with the same
density and size calculated to account for the
random effects of turbulence.

5. RESULTS

Analyses have been performed by examining
the free-surface flow on the LD9 spiral unit at
flow rates of 4, 6 and 8 m’/hr. Substantial
empirical data is available for validation of the
model, comprising the work of Holtham (1990)
and the collaborative experimental program
(Golab et al., 1997). In the present study, the
35° section of the spiral domain (Figure 1)
consists of a mesh with 20 x 39-46 x 208
control volumes in the mainstream, depth-wise
and radial directions, respectively. The number
of cells in the depth-wise direction has been
varied according to the flow rate and these cells
have been clustered toward the spiral base so
that in the region of maximum water depth, 22-
37 of the 39-46 cells contain water.

The fully-developed fluid flow profile at
6m’/hr is depicted in Figure 2. Induced by the
centrifugal force, the water concentrates to the
outer 20% of the spiral and smoothly increases
its depth (0 to 7.8 mm) outwards across the
trough. Predicted and measured depths against
radial distance (4 and 8 m’/hr) are plotted in
Figure 3, in which the radial extent of water
movement up along the outer wall is seen to be
satisfactorily predicted. The most significant
variation in depth between flow rates exists in
the outer zones whilst in the inner regions,
depths remain relatively uniform. Maximum
predicted depths of 5.5, 7.8 and 10.3 mm are
less than those measured (Figure 3) although in
light of the unsteady flow nature (Holtham,
1990) and, perhaps more importantly, that the
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presence of finely dispersed entrained air
within the turbulent outer regions may have
resulted in significant error of the conductivity
depth measurements (Holland-Batt  and
Holtham, 1991), the comparisons are probably
within acceptable limits of the numerical and
experimental uncertainties.

In the experimental analysis of Holtham
(1990), flow regimes across the trough were
calculated using the relationship for Reynolds
number, Re, in open channel flow, given by: Re
= phV)/p in which & is the local mean flow
depth (Figure 3) and V), the mean velocity.
Values of Vy for 8 radial streams were
determined by dividing the spiral into sections
using vertical splitter plates, measuring the
flow rates in each stream and estimating their
cross-sectional area. Assuming that the
transition from laminar to turbulent flow occurs
in the range 400 < Re < 2000, the transition
supported by the injection of dye traces, was
found to occur at 0.08-0.16 m radius with
estimated error bounds of £30%. Similarly, the
computational equivalent of Re at 4 m’/hr
predicts the transition to occur at 0.04-0.14 m
from the central column (Figure 4).

Measurements of instantaneous mainstream
velocities on the LD9 unit have recently been
enabled using Particle Image Velocimetry
(Golab et al., 1997). The measurements are
estimated to have reasonably small error (+
20%), allowing the value of any given
theoretical model to be rigorously assessed.
Similar to the empirical analysis, our model
predicts the mainstream velocity to smoothly
increase in magnitude outwards across the
trough; the velocity distribution at 6 m>/hr is
depicted in Figure 2. In general, the maximum
velocity at any given radius occurs at the free-
surface and increases from ~0.3 m/s in the
innermost trough region to its highest value at
~95% of the outer radius. Encouragingly, the
maximum predicted values of 2.0, 2.4 and 2.6
m/s at respectively, 4, 6 and 8 m’/hr compare
well with the equivalent measured velocities of
2.0, 2.3 and 2.2 m/s.

Perhaps the greatest test for quantitative
purposes is comparison of the instantaneous
velocities for a range of radii and depths within
the flow. Simulations of the mainstream
velocity at 4 m*/hr for flow depths of 1, 3 and 5
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Figure 2 Predicted fluid profile and mainstream velocity distribution at 6m’/hr
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Figure 3 Fluid depth profiles: experiment versus model at flow rates of 4 and 8 m’/hr
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Figure 4 Predicted Reynolds number versus radial distance at 4m*/hr
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mm are plotted in Figure 5. Measurements are
also given with velocities at depths of 3-5 mm
grouped together and error bars depicting 1
standard deviation about the mean values.
Overall, very satisfactory agreement is found.
Significant variation of the empirical data
observed in Figure 5 probably reflects a
number of causes, including the genuine
physical transient nature of the flow, the
inclusion of anomalous data points in the
analysis which have yet to be discounted, and
the error associated in resolving the depths to
within only 0.5 mm (Golab et al., 1997).

The model is able to capture the secondary
fluid flow, the structure of which in the outer
region of the spiral is depicted in Figure 6 at 8
m’/hr. In general, the flow is seen to move
outwards at the free-surface and back inwards
toward the central column near the trough base

with the flow reversal occurring at fractional
depths of 0.4-0.5. Unlike the predicted
mainstream velocity profiles, the secondary
flow is distinctly unsteady in magnitude with
variations of * 20%. Its magnitude is
approximately an order of magnitude less than
the mainstream component with mean
predicted maximums at 4, 6 and 8 m’hr of
0.13, 02 and 0.22 m/s, respectively.
Preliminary empirical data are consistent with
these results although the transient variations
are much greater and of at least the same order
as the mean values (Golab et al., 1997). At the
highest flow rate a reverse circulation current,
yet to be measured by experiment, is predicted
in the outer region. Similar reverse flow
structures in curved channels have been
measured and predicted in other studies (e.g.
De Vriend, 1981; Jayanti et al., 1990).
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Figure 5 Predicted and measured mainstream velocities: 1mm depth (top); 3-5 mm depth (lower).
Curves are numerical predictions. Measured values represent means of 4-12 points.
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Figure 6 Secondary flow in the outer trough at a flow rate of 8 m’/hr. The number of vectors have
been reduced by respectively, factors of two and four in the depth-wise and cross-stream directions.

To examine the hydrodynamic influences on
relative particulate separation, 100 particles
have been input into the flow domains at 4 and
8 m’/hr. Distributions across the trough were
determined after the particles had travelled six
complete turns down the spiral. Preliminary
analyses have been performed for both coal
particles (p, = 1450 kg/m®) and quartz (p, =
2650 kg/m®) which represent the extremes of
density processed on the LD9 unit. The full
range of particle sizes (100 - 1500 pm) were
also examined. Unfortunately, data from the
collaborative experimental program is not yet
available to compare with the numerical
simulations.

The predicted distributions clearly demonstrate
the classic pattern observed on spiral separators
with finer and less dense particles migrating to
the outer trough zones. Similarly to the
numerical study of Holland-Batt (1989),
outward migration diminished rapidly above
500 pm for both particulate densities and flow
rates. Above this limit, the particles were
found to accumulate within the innermost
region. Under all conditions the finest (100
um) particles migrated to the outer zones
whilst variations of flow rate and density were
found to influence particles in the somewhat
narrow size range of 100 < D, < 500 um on the
LD9 unit. Distributions for the 200 um coal
and quartz particles at both flow rates are
presented in Figure 7.
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Figure 7 Predicted radial distributions for 200
um particles of quartz (top) and coal (bottom)
at flow rates of 4 and 8 m*/hr




Simulations of the fluid secondary velocity
distribution have shown that the circulation at 8
m>/hr is significantly stronger than at 4 m’/hr
with  predicted  maximum  values  of
respectively, 0.13 and 0.22 m/s. Because the
secondary velocity primarily drives the process
of particulate separation (Holtham, 1990), it is
to be expected that greater outward migration
would occur at 8 m*/hr. This is seen to be the
case for particles of 200 pm diameter (Figure
7) although the distributions appear to be more
sensitive to variations in density than the flow
rate.

6. CONCLUSIONS

A commercially available CFD code,
FLUENT, has been used to model the fluid and
dilute particulate flow on the LD9 spiral used
for fine coal processing. For a range of flow
rates, the free surface flow has been simulated
using a robust fixed-grid Volume of Fluid
method and RNG k-€ turbulence model. Sound
quantitative agreement with experimental data
has been obtained with respect to flow depths
and, most encouragingly, instantaneous
mainstream velocities at arbitrary radii and
depths within the flow. The secondary current
has been able to be captured, the magnitudes of
which are of the same order as preliminary
empirical data. Particulate analyses using the
Lagrangian method have displayed the correct
qualitative flow behaviour but have yet to be
compared quantitatively with the collaborative
experimental program. Future developments of
the model will focus upon the particulate phase
at progressively higher and hence more
realistic feed concentrations.
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