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ABSTRACT

The numerical requirements for MHD flows
with free surfaces are considerable. A stable,
time-accurate Navier-Stokes solver is needed,
with the ability nct only to handle free sur-
faces in the presence of strong internal cir-
culations, but also to allow for surface ten-
sion, while still controlling surface instabili-
ties. Another requirement is the flexibility to
handle the electromagnetic fields, which will
normally have to be solved inside and outside
the fluid domain. Finally, there is the issue
of turbulence, complicated by the anisotropy
of the force field.

To do this with any efficiency requires sub-
stantial segregation of the variables in the al-
gorithm. This paper describes an approach
using operator splitting and conjugate gradi-
ent methods, and developed with the partial
differential equations solving program Fastflo.

1. NOMENCLATURE

r,y,z cartesian coordinates
t - time
L,  z-length of tank (North-South)
L,  y-length of tank (East-West)
H  height of tank
H;  initial height of liquid metal
Q;  liquid metal region
Q,  air space above liquid metal
Q  full computational domain (£; U Q)
Iy  free surface of liquid metal (21N Q9)
n  unit normal to 'y
zy  height of free surface

density of liquid metal

dynamic viscosity

kinematic viscosity (1/p)

electrical conductivity

magnetic permeability of free space
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liquid metal velocity
pressure

body force per unit volume
gravitational acceleration
mesh deformatien velocity

magnetic field (magnetic induction)
electric field

electric current density

scalar electrodynamic potential
vector electrodynamic potential
Lorentz force per unit volume
magnetic Reynolds number
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SI units are used throughout.

2. Overview of problem and meth-
ods ‘

The flow of molten metals subject to
electromagnetic fields involves solving the
Navier-Stokes equations for the liquid and
the Maxwell equations to determine the body
forces. These effects are coupled. In addi-
tion, in industrial problems there are often
free surfaces which are affected by the elec-
tromagnetic fields. The boundary conditions
here are complicated by the fact that those
fields extend into the space beyond.

Where complicated geometries are in-
volved, it is desirable to use an unstructured
mesh for solving the equations, and the finite
element method is attractive. Because of the
complexity of the interacting effects, we used
the finite element package Fastflo, which al-
lows a number of interactive problems to be
specified in a high level language, and can in-
corporate the free surface effects as well as
the electromagnetics.

3. The test problem

The test problem was posed by BHP Re-
search, as part of the joint Fastflo project.
A rectangular tank is filled with a liquid
metal, with a magnetic field applied from two




i)ox—sha,ped poles adjacent to the East and
West walls, with a potential difference ap-
plied across the North and South walls. Sim-
ulations were carried out for a steady applied
potential difference and an alternating poten-
tial difference (1 Hz).

4. The Navier-Stokes equations

The Navier-Stokes equations are set up in a
suitable weak form. In the problem to be de-
scribed here the surface tension is negligible,
and the appropriate natural boundary con-
dition is one of zero stress. This applies at
the free surface, where it is also convenient to
take the pressure as zero. On the walls and
bottom a no slip condition is used (and appro-
priate symmetry conditions on the symmetry
planes z,y = 0).

To present the momentum equations in the
appropriate weak form we define the function
spaces:

Vo={vlve H(Q;), v=0 on o},

H = L*(Q,).

Here 0, represents the total no slip bound-
ary (walls and bottom). The momentum
equation and continuity constraint in weak
form are

Vv € Vo, VgeH,
/le%:—-vdx—}-’}?(u,v)-—/mpv-vdx

= | f-vdx, (1)
2

V.ugdx=0, (2)
/4

where P(u,v) = / nVu- Vv dx+

/nl Za Vv,dx+/

=1

(3)
Here v denotes a vector test function, and ¢
is scalar test function. We seek a solution u €
Vo and p € H. In practice the solutions are
sought in suitable finite dimensional spaces;
typically using quadratic finite elements for
velocity and linear for pressure. The X term
in the momentum equation (3) represents the
effect of mesh motion.

u+X 1-V)u-v dx.

On the free surface I'y, in addition to the
natural zero stress condition, the flow field
must also satisfy the kinematic condition
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Uy = 8t + :.r:a—+ yay (4)

where zy is the height on I'y measured from
the bottom of the tank (2 = 0). The kine-
matic condition relates the rate of displace-
ment of the free surface to the instantaneous
fluid velocity. The zero surface siress and the
kinematic condition define a unique flow field
and free boundary T'y.

The influence of the electromagnetic field
on the fluid motion is felt through the Lorentz
force, which contributes to the body force in
the momentum equation:

f:pg+FL=pg+jXB. (5)

The changing electromagnetlc field caused by
the liquid motion is also computed

Segregated time stepping algorithm

In three dimensions it is only feasible to
solve the coupled equations for the flow vari-
ables and electromagnetic field variables as
well as the free surface motion by some
type of segregated solver process. The algo-
rithm used for the electromagnetic free sur-
face problem is outlined here.

An initial flow field, an initial electromag-
netic field and an initial liquid free surface are
specified. For this problem the liquid starts
at rest with a free surface of uniform height
(z = Hy). The primary electromagnetic field
is applied as specified in section 5. For the
first step the Lorentz force is computed and
a new liquid velocity and pressure is calcu-
lated. Then the electromagnetic field is up-
dated according to the new velocity field. Fi-
nally, the free surface is adjusted in accor-
dance with the kinematic condition and the
mesh distorted above and below the surface to
achieve this motion. This process is repeated
for subsequent steps. The algorithm gen-
erates a sequence of velocity/pressure fields
{u™, p"}, a sequence of electromagnetic fields
{B",E"} [or {A™,¢"} in the A-¢ formula-
tion] and a corresponding sequence of meshes



{Qr}, {92} approximating the flow region
and the air space.

Algorithm: {u",p",B*, E*,Q},Q3} —
{un+1,pn+1, Bn+1, E’f+1, Q':rlt+1, szi-{-l}:

Step 1. Solve flow equations for u™tl,

pntl: Vv € Vo, Vg€ L* (),
n4l _ 1
/Q?.“__&LL v dx+ P(u"t,v)
_ Q"‘pn+1 V-de=vn f.vdx, (6)
" 1
V-u™t! g dx=0. (7

ap
This is solved using a conjugate gradient al-
gorithm. To do this u™*! is replaced by u™ in
every term in P(u™t1,v) (3) except the first
(Laplacian).

Step 2. Advance the electromagnetic field:
B", E" — Bn+1, En+1. .

Step 3. Solve for a vertical displacement
function 8z(z, y) on the free surface satisfying
the differential equation

6z n n
E—l—u"”"lef —aV3%z=1u}" on I'}. (8)
aV26z is a smoothing term chosen to stabilise

the mesh deformation, with parameter c.

Step 4. Interpolate the vertical displace-
ment 62z(z, y) throughout Q™ and advance the
mesh for QF, QF to that for Q7 Qptl.

The overall algorithm segregates the up-
dating of the flow variables from the electro-
magnetic variables and the mesh motion. The
algorithm is formally first order accurate in
the time step At.

5. Turbulence model

As stated earlier, most liquid metal MHD
flows will be turbulent due to the very small
kinematic viscosity. However, in the pres-
ence of a dominant magnetic field the turbu-
lence structure is substantially altered from
the normal situation. According to author-
ities such as Shercliff (1965) the magnetic
field damps out vorticity components orthog-
onal to the field and the turbulence struc-
ture tends to collapse to a system of two-
dimensional eddies all aligned in the plane
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orthogonal to the field lines. This is in con-
trast to the usual tendency of turbulence to
be three-dimensional and isotropic. Further-
more, in some situations turbulence may be
completely suppressed by the field and the
flow laminarised.

There is no generally accepted turbulence
model for MHD flows of liquid metal. Spe-
cial models have been developed for flows in
ducts — see references cited by Araseki &
Kotake (1982). Sneyd (1993) and Shercliff
{1965) argue thai the MHD flow may well be
better simulated using a zero-equation eddy-
viscosity model. The eddy viscosity deter-
mines the overall scale of the velocity field.

In certain liquid metal MHD flows it seems
that the eddy viscosity is a constant or nearly
so throughout the metal. So for this problem
we have chosen to use a constant eddy viscos-
ity (n:+n). The experimental data of Taber-
let & Fautrelle (1985) suggests that the effec-
tive viscosity of liquid steel in sustained circu-
lating flows may be in the range 10* times the

molecular viscosity. This is value used here. .

6. Advancing the electromagnetic

field

In this section the computational process
for updating the electromagnetic field at Step
2 of the full free surface-MHD algorithm (sec-
tion 3) is described. The generally accepted
MHD equations are those of fluid flow plus
Maxwells’ equations:

VXE = _66_]? (Faraday’s law) (9)
VxB = yj (Ampére’s law) (10)
V.-B =0 (11)
j = o(E+ uxB)(Ohm’s law)(12)

V-3 =0  (current continuity) (13)

The importance of the diffusion of B
through the metal relative to its advection
with the fluid is signified by the magnetic
Reynolds number Rm = ULopu, where U is a
characteristic liquid velocity and L is a char-
acteristic length. Here L = L, = 1.0 m and
velocities may reach 2 m/s or more, giving
Rm = 2.8. This means that advection is sig-
nificant, and the evolution of B in the metal
must be modelled. Because of advection on




the free surface, it is also necessary to allow B
to evolve in both the liquid and the air space
above. The condition B = By (fixed mag-
netic field) is imposed on all outer boundaries
of the fixed computational domain .

6.1 A-¢ formulation

The electromagnetic field can be fully spec-
ified by means of a vector electrodynamic po-
tential A and a scalar electrodynamic poten-
tial ¢ according to

B =VxA, (14)

E = -v¢—%—‘:. (15)

The A-¢ formulation allows a natural spec-
ification of the electromagnetic boundary
conditions and the divergence free condition
on B is automatically satisfied. The Lorentz
force is easily calculated from the A-¢ fields
and the whole scheme is computationally ef-
ficient. The only disadvantage is that if B is
required, it has to be obtained by numerical
differentiation of A.

To specify A uniquely, we use the Coulomb
gauge: V- A = 0, and some fixed (Dirichlet)
boundary conditions.

6.2 Boundary conditions for potential
and current

Boundary conditions for ¢ (using symme-
try) are that

¢=0
b= —Vo(t)/2

The other electromagnetic boundary condi-
tions relate to electric current: there can be
no current flow through the insulating side
walls and bottom, nor through the metal/air
interface. These conditions are

at 2z =0,

atz=Lg/2. (16)

Jrn=0
y=Ly/2,

on I'y,

y=0, z=0. (17)

6.3 Evolution equation for A

The evolution equation for A can be de-
rived simply by equating the two expressions
for pj implied by (10) and (12): this gives

JA

Tpr = VIA+

op(-Vo+ux (Vx A)) in Q. (18)

This equation holds throughout the metal
and air space, with the proviso that oy and
u vanish in the air space. The equation is a
diffusion-advection equation for each compo-
nent of A, but coupled to ¢. Equation (18)
takes this specific form because of the gauge
condition: this allows the awkward vector op-
erator Vx VX to be replaced by the Lapla-
cian.

Equation (18) has an appropriate weak
form that is suitable for the finite element
method. The quantities o, u and V¢ are
all piecewise continuous, vanishing in the air
space: this presents no difficulty. The weak
form has a solution for A which is con-
tinuous and has continuous first derivatives
throughout ©, including the interface I'y. By
(14), this is consistent with continuity of B
throughout, including the interface, which is
required by the physics.

6.4 Equation for ¢ .

To determine E the potential ¢ must be
calculated in the metal domain. Substituting
in the current continuity equation V-j =0
gives:

V- (-Vé¢+ux(VxA)) =0 in Q. (19)

Dirichlet boundary conditions for ¢ are
given at (16). In addition, the current condi-
tions (17) can be imposed as natural bound-

ary conditions using the appropriate weak
formulation.

6.5 Algorithm for update of electromag-
netic field

Because the A and ¢ equations are coupled
the following type of segregated time stepping
algorithm can be used, using the proper weak
equations for A anf ¢. An initial state Ag is
required for A.

Find A™*! € V, such that Vv € V

An+1 — Am
[l n+l | —
/‘; (op A v+ VA Vv)dx =
/ﬂ ou(~V +u"t x (VX A™)+X-VA™) v dx,

(20)
recognising that op = 0, u™*! = 0 in Q.



Find ¢"t1 € W, such that Yw € W,

/ (Vo™ 4umtl x V x A™)) .V dx = 0.

Q

‘ (21)
Here V,, Vo, Wy, W are the appropriate

function spaces for (X), (Y). The term in X

in (20) is due to mesh motion computing E
from A using (15).

At each step A is determined over the full
domain, but ¢ is determined only over the
metal region. ‘

6.6 Initial and boundary conditions for

A

The initial state for A is taken to be a vec-
tor Ag that represents the magnetic field Bo
of the fixed magnets. This field can be given
by a reasonably simple analytic form. The
fixed field also appears in the boundary con-
ditions for A.

7. Results

Three characteristic simulations are de-
scribed here for a steady applied potential
difference and an alternating potential differ-
ence. The fixed magnetic field has a max-
imum strength of 0.4 T. In all cases the
effective dynamic viscosity is taken to be
64 kg m~! 571 — 10* times the molecular
viscosity. A potential difference of over-
all magnitude 0.4 volt is applied across the
North/South walls.

The tank dimensions were L = 3 m,
L, = 0.5 m; the initial depth of liquid was
0.7 m and the air space was 0.7 m deep. The
computational mesh (including the air space)

used is based on a regular 24 by 8 by 22 mesh

of rectangular 20-node box elements for the
z-, y- and z-directions: this mesh covers the
quarter symmetry-reduced computational do-
main. The element thickness is reduced near
the walls. The mesh has a total of 19693
nodes and 4224 elements. The mesh is shown
in Fig. 2 (left).

The results for the steady potential differ-
ence were obtained using a fixed time step of
0.025 s and a surface smoothing parameter of
a = 0.3 m%™1. A total run time of 5 seconds
was used for both of these simulations, with
a total of 200 time steps. The results for the
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alternating potential difference were obtained
using a fixed time step of 0.05 s and @ = 0.1
m?s~1. A total run time of 10 seconds was
used for this simulation, also with a total of
200 steps.

The gauge condition was satisfied, with
|V-A|<107° x |A]| throughout.
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Figure 1  Plots of heights of centre of free
surface (at z,y = 0) against time for (up-
per plot) steady potential difference, (lower
plot) alternating potential difference. Time
is plotted horizontally from 0 to 10 s, height
is plotted vertically over range 0.4 to 1.0 m.

Steady potential difference

If the applied potential difference is fixed
(constant current case) the system settles to
a steady state, at least if the primary Lorentz
force is not too strong. As the potential dif-
ference is applied two main circulation cells
become established, with uplift in the cen-
tral region and downflow near the ends of the
tank. The free surface rises in the central
region, then overshoots and decaying oscilla-
tions ensue. Fig. 1 (upper) shows through
time the height at the centre of the free sur-
face (z = 0, y = 0). The peak excursion
of the surface from the mean level (0.7 m) is
0.11 m. The system seems to have a natural
resonant period of about 1.6 s, based on the
displayed oscillations of the central height.

The computational meshes at ¢ = 0 and
t = 55 are shown in Fig. 2.. These correspond
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Figure 2  Steady poiential difference:
computational mesh at ¢ = 0 (left) and ¢t =
5 s (right). The meshes cover the region
z,y 2 0.

to the symmetry reduced region z,y > 0. A
full view of the whole free surface is shown in
grey scale in Fig. 4.

Figure 4 Steady potential difference: com-
plete free surface of liquid metal at £ = 5 s.

The velocity field at t = 5 s over the region
z,y > 0 is plotted with an arrow diagram in
Fig. 3 (over the visible surfaces of the metal
region). This diagram shows the simple cir-
culation cells at the steady state. The peak
velocity is 1.416 m/s.

In the steady state the maximum perturba-
tion to the magnetic field caused by the liquid
motion is about 10% in the z-component of B.
This is consistent with the intermediate Rm
value; the narrow tank and the fixed surface
A and B also tend to suppress the advective
perturbation.

Fig. 5 (left) shows the electric current den-
sity vector for the steady state. This is of

Figure 3  Steady potentiai difference:
velocity field at ¢ = 5 s over liquid metal
region with z,y > 0. Peak velocity is
1.416 m/s.

most interest on the free surface. Clearly,
the current is tangential to the surface, as
it should be, and is mainly from South to
North. However, in the central region there
are significant components of current in the
orthogonal directions; these are indicated in
Fig. 5 (right). These components arise from
the u X B part of the current.

Alternating potential difference

The alternating potential difference in-
duces an oscillatory motion of the free sur-
face, with an underlying pair of circulation
cells which alternate in flow direction. After a
settling time of about 3 s the fre=: surface mo-
tion becomes almost perfectly periodic, with
period 1 s.

The free surface and velocity arrows at suc-
cessive quarter periods (0.25 s) are shown
over one period (1 s) in Fig. 6, well af-
ter the periodic motion has been established
(t > 7.60 s). The difference in the surfaces
at t = 7.85 and 8.35 s shows that the overall
motion of the free surface contains harmonics
of the driving frequency sin 2xt.

The amplitude of excursion of the free sur-
face from the mean: ~ 0.12 m is similar to
the steady case but the peak flow velocities
are smaller: 0.773 m/s as compared to 1.416
m/s.

At the low frequency of 1 Hz there is no
significant electromagnetic skin effect: in this



Figure 5 Steady potential difference: electric current density on computational region z,y > 0
(left) and yz-component of current density on cross sections z —= 0.5, 1 m {right) at ¢ = 5 s. Peak
current density is 0.280 A m~2, peak yz-component is 0.229 A m~2.

t=28.35s

Figure 6 Alternating potential difference: velocity fields at successive quarter-period intervals
(0.25 s) on computational region z,y > 0. Peak velocity is 0.773 m/s.

case the skin depth is

d~ i = 0.47 m,
V uo

This is comparable to the fluid depth, so will
not have a significant boundary layer effect.
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