Inter Conf on CFD in Mineral & Metal Processing and Power Generation

CSIRO 1997

NON-NEWTONIAN FLOW IN A CAVITY
MIXER

P. Morris, K. Hourigan and M.C. Thompson
Fluid-dynamics Laboratory for Aeronautical and Industrial Research (FLAIR)
Dept. of Mechanical Engineering, Monash University, Clayton, Victoria

ABSTRACT

Many industrial fluids are non-Newtonian
in nature. These fluids possess such prop-
erties as shear-thinning and thickening,
plasticity and visco-elastic behaviour, to
name but a few. Whilst many can be
found in industrial mixing problems, there
is no general way of finding the design
variables that will lead to the most ef-
ficient mixing in any specific case. The
current lack of knowledge means that
there is little universality across the field,
and that the costly process of studying
each problem separately needs to be per-

formed. For operating mixing vessels, de- -

sign changes or different rheological prop-
erties can mean that the flow is far from
optimal, and so the performance is badly
degraded. Obviously a more systematic
technique is required, and so the cur-
rent work looks at the mixing of non-
Newtonian fluids from a prototypical level
to determine the main features and basic
principles involved.

NOMENCLATURE

Cr Carreau number

P pressure

p reduced pressure (= p/p)
Re Reynolds number

Sij stress tensor

t dimensionless time

u velocity vector

Utop driving plate velocity

p fluid density
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Vefs effective fluid viscosity

1. INTRODUCTION

A large percentage of industrial liquids are
non-Newtonian, such as polymer melts,
slurries, suspensions and emulsions, paints
and others. Efficient mixing of such ma-
terials is desirable at all levels of produc-
tion, and cost obviously increases with the
time and power input for the mechanical
agitation, or a similar process, that is re-
quired. Minimisation of cost while still ob-
taining acceptable mixing quality is a ma-
jor aim in any industrial situation. How-
ever, the current lack of understanding of
the basic principles involved in both mix-
ing and non-Newtonian fluids obviously
delays any systematic techniques. Given
that any fluid can be in a number of differ-
ent states over a vast number of operating
parameters and conditions, even within
the same mixing vessel, finding the oper-
ational optimum can be an extremely dif-
ficult task. In the past, prediction of the
flow patterns have been based on Newto-
nian theory (see Batchelor, 1967) with lit-
tle modification. Whilst this may work in
some simple cases, such as when the flow
is only weakly shear-thinning or thicken-
ing, in visco-elastic flows, the flow direc-
tion may be completely reversed (Bowen
et al., 1991, Leong and Ottino, 1990).

Whilst complicated mixing vessels designs
can be studied numerically, it is the ef-




fect of the fluid rheology on mixing that
is studied presently. This has been done
by removing most of the geometrical com-
plexity and studying the flow in a cavity
mixer. This basic prototype of a mixer has
four walls which are allowed to move for
certain periods of time. Tracer particles
are seeded into the flow to give a measure
of the performance and also mark regions
where poor mixing occurs. Fluids with
differing properties have been studied and
compared with the Newtonian counter-
parts at equivalent conditions.

Section 2 looks at the mathematical for-
mulation, while section 3 looks at the nu-
merical scheme used in the current work.
Results and a discussion of the mixing
simulations are provided in section 4.

2. MATHEMATICAL FORMULA-
TION

The formulation is based on the non-
dimensionalised Navier-Stokes equations
with adjustment for the viscosity changing
with the flow shear rates. The governing
equations are then
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where P is pressure divided by the fluid
density (p/p), u = (u,v), and vesy is the ef-
fective viscosity. The system is made con-
sistent by the addition of the continuity
equation

Vau=0. (2)

The effective viscosity, vesy, is given by the
Carreau (1968) model with zero infinite-
shear viscosity,

n=1
vers = (L+(Cr)*4?) 2 (3)
where 4 = /31,11 = §;;5;;, and
Ou;  Ou;
Sij = -3_1:—_, + B2; (4)

Obviously the selection of n =1 or Cr =0
in (3) will lead to the standard Navier-
Stokes form. Equation (3) is a preferred
form for use in computations as it pro-
duces a finite value for the viscosity at any
shear-rate, unlike the power-law models
which have been used in the past. It also
allows the establishment of a Reynolds
number (Re = UL/v,), based on the zero
rate of shear viscosity, for comparison with
the Newtonian counterparts.

The geometry used in the study has been
simplified in order to delineate the effect of
rheology on the flow patterns. The driven
cavity flow is a well known test case of -
computational fluid dynamics (Ghia et al.,
1986), and serves as a basic prototype of a
mixer. The system consists of a unit cav-
ity where each wall is allowed to move in
its own plane for certain periods of time
in a prescribed fashion. Whilst all four
walls can be driven to increase the mixing
efficiency, in any real case this would be
costly because some mechanical device is
required to drive each. What is required
is minimal amounts of agitation leading
to the highest levels of mixing possible.
Therefore, in the current study, only one
of the four walls shall be driven in differ-
ent fashions, and the others will remain
stationary. A schematic of the design is
shown in Figure 1. '

3. NUMERICAL TECHNIQUE

Chaotic mixing simulations of the past
(Souvaliotis et. al, 1995) have demon-
strated that small numerical errors may
lead to false predictions within any com-
putational simulation of mixing. Al-
though the flows studied here are at a
small enough Reynolds number that chaos
should not appear, the code has been
designed to handle this situation if it
should occur. Therefore, the spatial vari-
ables are handled by a spectral expansion,



and the time stepping is handled by a
high-order splitting scheme. As the flow
is wall bounded, Chebyshev polynomials
(Canuto et al., 1988) are used in each di-
rection within the flow. These are cho-
sen because of the compression of the grid
around the bounding walls when Gauss-
Labotto points are used, and also the
availability of a Fast Fourier Transform for
derivative calculations. The time stepping
is a modified version of the time-splitting
used within spectral element simulations
of the past (Karniadakis et al., 1991). The
convection terms are advanced first

i-—u”

At

= —(u".V)u" (5)
using an Adams-Bashforth scheme on the
nonlinear term (see Press et al., 1986).
Continuity is then enforced on the follow-
ing substep by a pressure projection
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Finally, the diffusion step is performed
with an implicit Crank-Nicholson discreti-
sation ‘
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where the operator is given by

" 0z \ "0z oy \ "dy
As (8) contains a nonlinear implicit opera-
tor, this is handled in the current case via

iteration. A linear diffusion term is added
to both sides of (7) to form

D, (8)

2Re

2Re~
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Vuiters1 — Ag liter+1 = Vuter —

"
---—(Diteruiter + Dnun) , iter=10,1,... (9)

which can be solved by standard explicit
linear equation solvers (Canuto et al.,
1988). Iteration of (9) is performed until
the changes in the velocity field are less

267

than 107%. Although a spectral multigrid
technique could be used in place here, the
current technique requires little extra ef-
fort from a standard Navier-Stokes equa-
tion solver.

In order to establish the amount of mix-
ing, passive particles are seeded into the
flow and convected with the velocity field.
A fourth-order Runge Kutta scheme is
used to adjust the particle positions ac-
cording to the equations

dz

Fr

dy
— = 7.

7t (10)

Initially, 25,000 particles are placed within
the box at a position as shown in Figure
2. This is similar to the initial conditions
used in Ottino (1989). However, given
enough mixing time, the results become
independent of the intial conditions.

4. RESULTS AND DISCUSSION

The numerical technique was first bench-
marked on the driven cavity flow at a
Reynolds number of 7500 for a Newtonian
fluid. This provides a suitable test of the
code, as results for this case are well pub-
lished. At this Reynolds number, the flow
lies close to the regime of transition to un-
steadiness and false behaviour here due to
spatial and temporal discretisation errors
are easily detectable. Since a global spec-
tral scheme is being used for the spatial
variables, the driving lid velocity along the
top wall cannot be uniform, but rather
must approach zero at the corners. With
the wall lying between z € (—1,1), in the
current study the velocity is given by

Utop = (1 —exp(—50(1 — :t;z)))4 . (11)

The fourth-order power on the right-hand
side in (11) is used so that the higher
derivatives of velocity are also zero at the
corners. If the power is not used, then
this leads to a discontinuity in vorticity




and hence problems with pressure bound-
ary conditions (Karniadakis et al., 1991).
Figure 3 shows the calculated streamlines
for this flow, in good agreement with Ghia
et al. (1982) using a much higher reso-
lution. A grid of size 65 x 65 was used
in the present spectral scheme; however,
doubling the grid size in both directions
did not change the flow patterns and so
the lower value will be used for all further
simulations.

There are a number of free parameters
and operating conditions available within
the current study, the major ones being
Re,Cr,n and the driving pattern on the
top plate. An in-depth parameter search
is not the aim of the current study, but
rather to gain some understanding of the
basic principles involved as shifts in val-
ues or patterns occur. The first case stud-
jed is that of Reynolds number depen-
dency. A Newtonian fluid is considered
initially, as they are relatively well under-
stood. For high Reynolds numbers, the
flow will be convectively dominated and
so better mixing should occur at equiv-
alent times. If the Reynolds numbers is
indeed high enough, then chaotic veloc-
ity fields should result which will lead to
even better mixing performance. Figure
4 shows four otherwise equivalent situa-
tions, except that Re has been changed in
each. The driving pattern on the top lid
is given by

Utop = (1 — exp(—50(1 — :1:2)))4 (sin(1))?,

(12)
where t is the time. Differing driving pat-
terns will be considered later; however,
this one is known from experience to mix
the particles significantly in a short time
period. The figure shows each case at
a non-dimensional time of ¢ = 100, and
the results are as expected. With the
low Reynolds case, although the parti-
cles have generally moved westwards due
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to the driving pattern, only a small per-
centage of particles have been moved from
the initial core. Slightly higher Re again
leads to more movement and spreading;
however, the particles do remain clumped
around the initial starting position. Still
higher values lead to much more mixing
of the particles into the flow, and differing
regions like chaotic islands (Ottino, 1989)
can be seen to form. These are regions in
which particles will not go, thus leading to
voids in the mix. Time visualisations have
revealed these to last only for certain peri-
ods of time, and then collapse and possibly
form elsewhere.

The same Reynolds number dependency
can also be established with the non-
Newtonian flows. In any industrial case,
the values of Cr and n in (3) would need to
established from measurements of the ac-
tual fluid over a range of shear rates. The
Reynolds numbers also tend to be lower
with these flows due to the high zero-shear
rate viscosities. In the present case, the
values are arbitrary in order to establish
generalised behaviour. Figure 5 shows the
flow of a non-Newtonian fluid for two dif-
ferent Reynolds numbers, namely ten and
one hundred, with the fluid having the
values n = 0.9 and Cr = 4. The lower
Reynolds number is seen to lead to poor
mixing, with threads of particles merely
forming a spiral within the cavity. The
higher Reynolds case leads to significant
mixing within the flow, although a denser
central core of particles can still be seen.

Changes in the parameters for the non-
Newtonian viscosity in (3) are considered
next, to determine the flow dependency.
Figure 6 shows the flow with Re = 100,
n = 0.9, and one value of Cr double the
other. At this Reynolds number, the pat-
terns are near identical, except for some
core deformation. Thus the conclusion is
that slight changes in this parameter do



not affect results greatly. Changes in the
value of n can also be seen to produce sim-
ilar results in Figure 7, where Re = 10,
Cr = 4, and the value of n is increased.
It thus appears that the Reynolds num-
ber dependency is the strongest in these
flows.

Finally, the effect of the plate driving pat-
tern on the degree of mixing is considered.
The non-Newtonian parameters are set to
Cr = 4 and n = 0.7, and the Reynolds
number is equal to ten. Although many
analytic forms have been suggested in the
past (Ottino, 1989), only four shall be
studied here, these being

ugop = (1 — exp(—50(1 — mz)))4tanh(t)
Utop = (1 — exp(—50(1 — 32)))4 sin(t)
Ugop = (1 — exp(—50(1 — mz))) (sm(t
Ugop = (1 — exp(—50(1 — 22)))* | sin(t

The first is just the driven cavity proﬁle
with a time lag to allow for a smooth
change from the zero initial condition.
The other three contain a periodical com-
ponent, but each can have a different value
or sign at the same time.

Figure 8 shows the particle positions for
each driving pattern at equivalent times,
t = 125, and the differences are clear.
The tanh driving pattern merely drives
the fluid in a single direction, and after
the initial start-up, at a uniform veloc-
ity. The spiral threads of particles seen
around the central core tend to closely fol-
low the streamlines (see Figure 3). This
is not surprising, as the flow is steady
at this Reynolds number after this time
evolution. The sin dependence leads to
the least spreading of the particles within
the flow, mainly because as the core is
moved in one direction in a half-period,
it is then returned back to a similar start-
ing position as the velocities are reversed
in the next half. The distortion is due
to the diffusion and the particle positions
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never quite returning to the initial values.
Therefore it is to expected that if the plate
is driven in one direction only, then the
amount of mixing within the flow may be
improved. Both the last two profiles have
this feature, but it must be remembered
that the sin? profile will have lower veloc-
ities over most of the period compared to
the other. The two spiral patterns look
similar, however, the |sin| profile has al-
lowed extra particle movement from the
denser core. This core of particles appears
to have only been stretched slightly in the

sin? case.

5. CONCLUSIONS

Mixing behaviour in non-Newtonian flows
has been studied with the use of a pro-
totypical cavity mixer. This has allowed
thus
establishing the changes caused by fluid
rheology alone. Although driving the four
walls in a certain pattern or in a random

comparison with Newtonian flows,

manner may lead to substantial mixing,
the realisation is that in any industrial sit-
uation the wall motion must be driven by
a mechanical device and so adding to the
cost of production. Therefore, improve-
ments in mixing with a minimum amount
of mechanical agitation is the aim.

The numerical scheme used was a global
spectral technique with iteration for the
non-linear viscosity at every timestep.
This effectively overcomes the difficul-
ties with linearisation techniques used in
global spectral schemes of the past, and
has further extensions to large eddy simu-
lation modelling of turbulence. The high-
order temporal and spatial scheme can be
further generalised to include more com-
plicated viscosity models, such as a visco-
elastic type (Oldroyd, 1964), but shall
await a further study.
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Figure 1. Schematic of the cavity mixer design.
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Figure 2. Initial particle positions.
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Figure 3. Driven cavity flow at Re=7500.
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Figure 4. Particle distributions within the cavity at ¢t = 125 and four
different Reynolds numbers, (a) Re=100, (b) Re=1000, (c) Re=10000, (d) Re=20000.
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Figure 5. Particle distributions for a non-Newtonian fluid (n = 0.9, Cr = 4), and
(2) Re=100, (b) Re=500.
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Figure 6. Particle distributions at ¢ = 125 with n = 0.9, Re = 100 and
(a) Cr =4, (b) Cr =8.
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Figure 7. Particle distributions with Cr =4, Re = 10, and (a) n = 0.7, (b) n = 0.9.
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Figure 8. The effect of the plate driving pattern on non-Newtonian mixing.
(a) utep = F(z)tanh(t), (b) utp = F(z)sin(t)
(€) vtop = F(z)sin’(t), (d) vep = F(z)|sin(t)],
where F(z) = (1 — ezp(—50(1 — z2)))*.
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