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ABSTRACT

Numerical simulations of high
Reynolds number flows in the unit driven
cavity have been performed. The system
is shown to become unsteady at Re =
8,125 and chaotic at Re = 17,000. In be-
tween this range the system switches be-
tween periodic and quasi-periodic states
with step-wise changes in period. A pas-
sive concentration field is introduced to
the flow at its asymptotic state to show
the effects of chaos on mixing.

NOMENCLATURE

A area

c passive concentration field
co initial passive concentration field
D pressure

Pe Peclet number

t dimensionless time

u velocity vector

u*, u** intermediate velocity vector
u’ perturbed velocity vector
Re Reynolds number

€ small constant

1. INTRODUCTION

Mixing of fluids is important in
many industrial and environmental situ-
ations, but because the process is poorly
understood, most studies are postdictive
rather than predictive. Improving effi-
ciency is obviously an industrial imper-
ative as costs increase with power input
and length of time required for fluids to be
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sufficiently mixed. However, in any gener-
alised case, many factors can be changed
individually or in combination, and it is
the identification of the dominant factors
and modifications which lead to greater
mixing efficiency.

Although full mixing vessel de-
signs can now be studied numerically,
there are advantages to gain an under-
standing at a basic level and using this
knowledge to suggest improvements. In
the current study, most of the geometrical
detail has been removed, and the mixing
properties of the system are examined as
the governing parameters are altered. A
basic prototype of a mixer is the driven
cavity flow, since it contains the essen-
tial feature of one of the walls providing
a shearing force to drive the fluid within
the regime, thus representing some level of
mechanical agitation. Even within such a
simple system however, four distinct flow
regimes have been found. The transition
from steady to chaotic flow, and behaviour
in between, have been examined in detail,
thus suggesting how mixing is affected by
modifications to parameters governing the
system.

The driven cavity problem con-
sists of a unit two-dimensional cavity with
the top wall driven at a prescribed veloc-
ity, with the other three remaining sta-
tionary. This flow is a well known test
problem in computational fluid dynamics,
and a complete set of steady solutions at




low Reynolds number (Re < 10,000) have
been obtained by Ghia et al. (1982) which
concentrated on vortex dynamics. Many
have used this problem in the past to
benchmark computational schemes (Co-
mini, Manzan and Nonino, 1994, Weinan
and Liu, 1994, Hou et ol. 1995). This
study aims to extend the solutions to
time-dependent flows at higher Reynolds
number where the flow may be periodic,
quasi-periodic or chaotic.

Since a global spectral expansion
is being used in the numerical scheme, in
order to preserve spectral accuracy the top
profile is not uniform as in previous stud-
ies, but approaches zero smoothly at the
two corners. This avoids a discontinuity
in the vorticity profile, and hence prob-
lems with pressure boundary conditions
(Karniadkis et al., 1991). Although any
form could be used that satisfies the nec-
essary boundary conditions, the system is
changed slightly with each profile. Sugges-
tions for the analytic form can be found
in Shen(1990), where he solved the driven
cavity up to Re = 16,000 with a quar-
tic profile (16z%(1 — z)2) for the moving
lid. The solution was steady up to Re =
10,000, and between Re = 10,500 and
15,000, the solution appeared to be peri-
odic with one distinct frequency. This was
shown by plots of total kinetic energy and
velocity at arbitrary locations as a func-
tion of time and was attributed to a Hopf
bifurcation in the interval (10,000,10,500].
The system becomes quasi-periodic with
two distinct frequencies above Re = 15, 500
and this was also attributed to another bi-
furcation between (15,000,15,500]. More
uniform profiles can be expected to lower
these values, and so Liffman(1996) also
observed a quasi-periodic behaviour at
Re = 10,000 with a constant lid profile
that exponentially decays at the edges (1—
exp(—20(1 — z2))). Verstappen, Wissink
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and Veldman(1993) analysed the time se-
ries of energy dissipation and concluded
that the system is chaotic at Re = 22, 000.

The aim of this paper is to char-
acterise the flow regimes from initial un-
steadiness to chaos. Using a passive con-
centration field, it will be shown that there
is an improvement in mixing in the chaotic
regime. The mathematical formulation
and the boundary conditions will be pre-
sented in Section 2. In Section 3, the nu-
merical scheme will be described including
the spatial and temporal discretization.
The different flow regimes, the methods
used to determine chaotic behaviour and
their effects on mixing will be presented
in Section 4.

2. MATHEMATICAL FORMULA-
TION

The formulation is based on
the non-dimensionalised incompressible
Navier-Stokes equations, namely :

Bu__

1 o .
5 —V4uin

Re
Vaua=0in .

—(u-V)u-Vp + (1)

(2)

The two dimensional unit cav-
ity has three stationary boundaries and a
‘driving’ lid with a fixed velocity :

u = ((1~exp(-20(1 - 2%)))%,0).  (3)

The lid profile used is similar to Liff-
man(1996), but modified to ensure that

~both the first derivative and second

derivative are continuous at the corners.
This profile is used because it is a rea-
sonable approximation to the uniform lid
driven cavity, and eliminates the corner
singularities. The initial flow velocity is
set to be zero throughout the domain.
Ramping up the lid smoothly in time or



impulsively starting it does not effect the
final flow state.

The passive concentration field is
governed by a nondimensional advection-
diffusion equation (Toussaint, Carriere
and Raynal, 1995),

o _

ot
with a vanishing concentration flux on the
solid boundaries,

1

Pe V¢ in Q,

—(u-V)c+ (4)

Ve-n=0onT. (5)

In this closed domain, conservation argu-
ments demand that the spatial intergral of
the concentration field remains constant
in time. Therefore the condition to re-
move the non-uniqueness caused by the
arbitrary additive constantin the solution
of (4) and (5) is

/ch-—/co dA =0,
Q 9]

where cg is the initial concentration field.
In the current work, this is given by

(6)

co(z,y) = exp(—20((z —0.75)% + (y — 0.25)?))

(7)

which will be a concentrated circular re-
gion with a maximum of 1.0 and centered
at (0.75,0.25). The diffusivity of the con-
centration field and the flow field are cho-
sen to be equal (Pe = Re).

in Q,

3. NUMERICAL TECHNIQUE

Previous mixing simulations
(Souvaliotis et al., 1995) have demon-

strated that false predictions of mixing

may result from numerical errors, es-
pecially in the chaotic regime. There-
fore, the spatial variables are handled
by a spectral expansion. As the flow
is wall bounded, Chebyshev polynomials
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(Canuto et al., 1988) are used in each di-
rection within the flow. These are cho-
sen because of the natural compression of
the grid around the bounding walls when
Gauss-Labotto points are used. Although
a Fast Fourier Transform for derivative
calculations exists, direct multiplication
using optimised matrix routines are faster
(Shen, 1991). The increase in calcula-
tions still outweights the transform be-
cause of its logical operations. Implicit
steps are solved using a matrix diagonali-
sation technique (Canuto et al., 1988).

The time stepping is a modi-
fied version of the operator-splitting used
within previous spectral element simula-
tions (Karniadakis et al., 1991). The mod-
ifications are necessary to facilitate the use
of a Runge-Kutta scheme for the convec-
tion term. The derivatives in the Navier-
Stokes equations have no explicit depen-
dence on ¢, and therefore a more memory
efficient Runge-Kutta scheme can be used
(Jameson et al., 1981). The pressure is
solved implicitly and the diffusion treated
with a Crank-Nicholson scheme. The al-
gorithm for the modified scheme is :

Setu=1u"
For k=s,1,-1
—u-Vu

with s being the order of the Runge-Kutta
scheme. Fourth order (k = 4) is used for
all these simulations.

The passive concentration field is
solved on the same mesh as the Navier-
Stokes equations. A similar operator-
splitting technique is used for the passive
concentration field. The algorithm is as
thus :




Setc=c"

For k=s,1,-1

S = —utt Ve
'CA_WCF 3 Pe(vzc+v2 c")
End For

Set ¢l =¢

in this case.

Measurement of time variations
of the total kinetic energy gives a global
perspective of the flow. This method
has been used by many including Shen
(1990) and Liffman(1996) when studying
this problem. The total kinetic energy is
given by :

E(nAt) = 3 ZA,g[ (W) + ()%, (8)

,J—O

where A;; is the local area around the
point (z;,y;).

4 RESULTS AND DISCUSSION
4.1 Flow Regimes

The simulations were carried out
with 80 nodes in each direction, and a At
of 0.0025 time units. A steady solution
is attainable up to Re = 8,000. This was
judged after a long settling time of approx-
imately 5,000 time units, where the fluc-
tuations in kinetic energy were less than
0.0001 per cent and the fluctuations in ve-
locity were of the same order as the nu-
merical error.

Between Re 8125 and 9750,
the total kinetic energy shows that the
system appears to be perfectly periodic,
with a period of approximately 2.25 time
units. = The mean kinetic energy de-
creases linearly in this range with increas-
ing Reynolds number. This is similar
to the observation by Shen(1990) in the
first bifurcation region of the regularised
driven cavity. The decrease in mean to-

tal kinetic energy also extends to higher
Reynolds numbers as shown in Figure 1.

Simulations were then performed
with increasing Reynolds number. At
Re = 10,000 and 11,000, the system
would exhibit a quasi periodic state with
two dominant frequencies. The domi-
nant periods at Re = 10,000 are 2.32
and 3.85, and are 3.76 and 6.40 at Re =
11,000 . Shen(1990) also observed a two-
periodic state when the Reynolds num-
ber increased past the perfectly periodic
regime. The plot of kinetic energy at
Re = 10,000 as a function of time is very
similar to that obtained by Liffman(1996).

The system appears to settle
down to one frequency between Re
12,000 and 13,000 with a period of oscilla-
tion of 1.47. At Re = 14,000 and 14, 500,
another quasi periodic regime with domi-
nant periods of 1.52 and 15.06 is observed.
The system settles down to a periodic cy-
cle at Re = 15,000 and 15,500 with a pe-
riod of 1.56. Figure 1 shows the kinetic en-
ergy trace at several Reynolds numbers il-
lustrating the switching between periodic
to quasi-periodic states. The step-wise
change in periods is summarised in Fig-
ure 2. From Re = 15, 750 onwards, there is
an increase in the number of modes espe-
cially at longer periods shown by the spec-
tral plots in Figure 3. This then leads to
chaotic features detectable at Re = 17,000
and 20, 000.

Each simulation is integrated un-
til the total kinetic energy reached an
asymptotic state. For the periodic states,
the sinusoidal signal is ensured to be sym-
metrical for at least 50 cycles. In the
quasi-periodic and chaotic states, the re-
quirements are that the mean is constant
and the Fourier transform of the kinetic
energy signal is constant when taken over



several time periods. This would typically
require several thousand time units. The
solution at the next lower Reynolds num-
ber is used as initial conditions for the sim-
ulations. Observations of fluctuations of
velocity components at arbitrary locations
in the cavity show similar behaviour to the
total kinetic energy. Simulations were car-
ried out at a resolution of 100 nodes in
each direction at Re = 14,000, 17,000 and
20,000. The features in the flow field and
the behaviour of the total kinetic energy
are consistent for both resolution.

4.2 Test fo}r Chaos

Once the flow has reached an
asymptotic state, a small disturbance is
introduced into the system. The per-
turbed and unperturbed solutions are
then integrated forward in time. The L2
norm of the difference in velocity fields
is measured as a function of time to de-
termine if the solutions diverged exponen-
tially to different states. This is typical
of chaotic type behaviour (Lorenz, 1963).
The perturbation is introduced to the ve-
locity field by

u' =u+ef(z,y). (9)

The size of the perturbation is chosen to
be very small, e = 0.0001 and f(z,y) is cho-
sen so that the resultant flow field satisfies
the boundary conditions and continuity.
Here it is chosen to be

f(z,y) = (2.0 sin(27z) cos(27z) sin?(27y),

~2.0 sin(27y) cos(2my) sin?(27z)) in Q.
(10)
The initial L2 norm was 4.2736 x 10~7.
This test was done at Re =
10,000, 17,000 and 20,000. At Re
10,000, the L2 norm between the two so-
lutions remained at the same order as the
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initial value. Integrating these two solu-
tions for 200 time units showed no indi-
cations of divergence. At Re = 17,000,
the solutions initially remained close (L2
norm remained of the same order), but af-
ter 50 time units the solution rapidly di-
verged to different states. The L2 norm
increased by several orders of magnitude
in this time. This was also the case at
Re = 20,000, but the solutions started di-
verging rapidly at 40 time units after the
perturbations were introduced. Therefore
the solutions at Re = 17,000 and 20,000
exhibit chaotic features.

4.3 Passive Concentration Field

Once the flow has reached an
asymptotic state, the initial condition for
the passive concentration field is-intro-
duced. The simulations were then inte-
grated forward 50 time units allowing the
passive concentration field to be convected
and diffused with the flow field. This
was done for Re = 8000, 10,000, 14,000,
17,000 and 20,000. At Re = 8000 and
10,000, the passive concentration field is

convected around the cavity and the dis-

persion is dominated by diffusion. There
is less diffusion of the concentration field
at Re = 14,000, 17,000 and 20,000. There
are distortions to the contour lines at Re =
17,000 which are attributed to the chaotic
nature of the flow. At Re = 20,000, there
is significantly more stretching and dis-
torting of the passive concentration field.
This suggests that in the chaotic region,
convective forces will tend to stretch and
distort the fluid.

5. CONCLUSION

The driven cavity, in this case, is
steady untill Re = 8,000. Between Re = -
8,125 and 15,500, the flow switches be-
tween a periodic and a quasi periodic state




with a step-wise decrease in period with
increasing Reynolds number. Increasing
past Re = 15,750, there is an increasing
number of modes until the system appears
to be chaotic at Re = 17,000.

Once the flow has reached an
asymptotic state, a small perturbation in-
troduced to the solutions at Re = 17,000
and 20,000 caused the system to diverge
exponentially from the unperturbed state.
This is typical of chaotic behaviour where
small changes lead to the formation of
seperate differing states. Mixing is im-
proved in the chaotic region by stretching
and distortion of fluid elements.
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Figure 1 : Total kinetic energy trace for 300 time units at several Reynolds numbers. Traces are
taken when an asymptotic state has been reached. Inserts show 50 time units of detailed behaviour
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Figure 2 : Period of oscillation as a function of Reynolds number. Shaded regions exhibit
quasi-periodic behaviour. :
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Figure 3 : Spectral plot of kinetic energy at (a) Re=15,750, (b) Re=16,000 and (c) Re=17,000 showing
increasing spectral modes at the transition to chaos.
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(2) . (b)
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Figure 4 : Contours of passive concentration
field 50 time units after introduction to the
asymptotic flow state at (a) Re = 8,500,

(b) Re = 10,000, (c) Re = 14,000,

(d) Re = 17,000, (e) Re=20,000 . Contour
levels are at 0.05, 0.10, 0.15, 0.20, 0.25

and 0.30. The ‘driving’ lid is at the top and
the direction is towards the right of the
page. Dashed lines in (a) represent the
initial scalar field.
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