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ABSTRACT

In this paper, a computational study has been
carried out to investigate the slugging behaviour
of a fluidised bed using a two-fluid continuum
model. Along this approach, gas and solid
phases are treated as separate interpenetrating
continuum, and the equations are solved for both
phases and coupled through their interfacial
momentum exchange terms. The computations
are started with minimum fluidisation conditions
in a rectangular bed. The results are presented in
terms of void fraction contours, which can lead
to the determination of the slug length and
frequency, and the bed expansion.
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NOMENCLATURE

drag coefficient

diameter of solid particle, m
g gravity, m/s

modulus of solid phase, Pa
P pressure, Pa

Re, solid Reynolds number

t time, s

Uns  minimum fluidisation velocity, m/s
u;  gas velocity, m/s

U solid velocity, m/s

T stress tensor

3 deformation rate tensor

GREEK LETTERS

B . gas-particle momentum transfer
coefficient, kg/m’.s

&, 8 gas and solid volume fraction

En  minimum fluidisation porosity

A,  mean distance between particles, m

e, s gas and solid viscosity, kg/m-s

Pg, Ps gas and solid density, kg/m®

¢s  sphericity of the particle
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SUBSCRIPT
g gas
5 solid

1. INTRODUCTION

Gas-particle beds cannot expand indefinitely into
ideal, uniform fluidised beds by passing an
upward flow of gas through them. Instead they
form complex, heterogeneous  structures
traversed by voids or bubbles. When the size of
fluidised beds is relatively small, a bubbling
flow in a fluidised bed may evolve into the so-
called slugging flow. Stewart and Davidson
(1967) describe the two main regimes which can
be observed in a fluidised bed when the gas-
particle flow is in slug-regime. In the smoothly
slugging bed, slugs are round-nosed and solids
flow past the slug in an annular region on the
wall. This regime. occurs with materials which
fluidise easily and is contrasted with that in
which square-nosed slugs are observed. The
square-nosed slugs fill the complete cross-
section, solids raining through the slug. The
pressure drop across a raining slugging bed is
higher and more irregular than across a
smoothly slugging bed because of the “locking™
of solids on to the bed wall.

However, the presence of the slugs affects the
efficiency of interactions as well as the mixing
conditions inside the beds, so that the
performance of fluidised bed reactors can not be
very well predicted without correct gas-particle
flow field predictions. Computational method
does provide satisfactorily gas-particle flow field"
in fluidised beds, which should aid in improving
the performance of a fluidised bed with slugging
flow.

Numerical simulation of gas-particle flow in the
fluidised beds was made by several researchers
(Gidaspow et al. 1983, Ettehadieh et al. 1984,
Bouillard et al. 1989a, 1989b, 1991). All the




previous attempts have concentrated on bubbling
fluidisation, but a small amount of efforts
(Gidaspow et al. 1991) were also made on the
circulating fluidised beds. The specific objective
of this numerical investigation is to predict the
features of slugging behaviour, such as bed
expansion, slug length and frequency, as well as
the formation, rise and subsequent breaking of
the slugs.

2. GOVERNING EQUATIONS

Hydrodynamic models can be derived by three
different methods, The first formulation is
reached at intuitively by extending the single-
phase equations of conservation. The second
approach is researched by using the principles of
non-equilibrium thermodynamics (Gidaspow,
1978). But the equations of this model do not as
yet include ‘second order’ terms involving gas
and solids viscosities and particle to particle
interaction associated with a solid pressure, so it
cannot be properly used in dense multi-phase
flow. The third approach is obtained by
averaging the single-phase  conservation
equations in a control volume, through space
averaging, time averaging or statistical
averaging (Soo, 1991). Theoretical treatment
favours space averaging while convenient
experimental methods favour time averaging.
Statistical averaging appears to be convenient in
treating general interfaces but it also encounters
other some difficulties (Soo, 1991). Presently we
use the space averaging approach to obtain the
multi-phase continuum model.

The space-averaged continuity and momentum
equations for two-dimensional, transient,
isothermal, incompressible, viscous flow

containing gas and solid phases can be written in .

the following forms (Jackson, 1985):

(a) the continuity equation for gas phase:

oe
—++V-(g,u,)=0

1
2 )
(b) the continuity equation for solid phase:
oe
£+V-(gu)=0 2
24V (e,m,) ®
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(c) the momentum equation for the gas phase:

olp.e.u
———(pga: g)+V-(pgagugug

—B(u, —u)+V-e,t +pe.g

= —ang 3)

(d) the momentum- equation for the solid phase:

Aos.n.) S;’ts“‘ +V-(pe,uu, )=
_stp_B(us - ug)+v'8st1 4)
+p,&,8 — G(g, ) Ve,

where
g, +8, =1 )

t, =2us-2/30,V-u I (I=gors) (6)

s=1/2[Vu, +(Vu,)"] (=gors) (7

In Eq. (4 the - additional term
G(e,)Ve_ denoting  particle to  particle
interaction.

In the above equation the significant parameters
characterising the behaviour of the bed are the
momentum transfer coefficient B, the particle-
particle interaction and the solid viscosity us. In
general these cannot be treated as constants
since they vary with the void fraction in the beds
even for a given materials. Hence, additional
equations are required to model these
parameters, as discussed in the following
sections.

3. THE MOMENTUM TRANSFER
COEFFICIENT

The drag force between the dispersed particulate
phase and the continuous fluid phase is
expressed in terms of the product of a
momentum transfer coefficient and the relative
velocities of the phases.

As the void fraction decreases, indicating an
increase in the number density of particles, it is
expected that the interface friction force will
increase substantially to provide an additional



resistance to the gas flow. The drag relation
used in this paper is based on the classical
Ergun’s equation (1952) which relates the
pressure drop in a bed to the superficial gas
velocity as follows:

2
8s ug

g, (9.d,)’

-Vp, =[150

®)

g, P
+1.75-%—2"lu,|]u

ot b,
Realising that the superficial velocity, up = (u,-
u,) and -&,Vp = B(uz-u;), the momentum transfer
coefficient B is written as

g2 W
p=150%_te
g, (9,d,)*

p
+175% , —%—|u, —u,
£ d)sdp | ’

©)

The above law is valid for g; < 0.8. For g;> 0.8,
Richardson and Zaki (1954) formulated the
momentum transfer coefficient as

3 . €8
B==C,—2>p_ lu —uf(c,) (10)
4 d)sdp gl g B
where
£(e,) =" (11)
The drag coefficient C4 is related to particle
Reynolds number Re;, by
C,= 24 [1+ O.15(Rep)°‘687]
Re,
for Re,<1000 (12)
C,=044  for Re;>1000
(13)
where
Re, = agpgfug -u,|d, /i, (14)

4. THE SOLID STRESS AND VISCOSITY

It is necessary to add the solid stress for the
solid phase to prevent the particles from
reaching impossibly low void fraction. The term
is very small in most cases, but becomes of
numerical significance when the void fractions
go below the minimum fluidisation void fraction.
It also helps to make the computation stable,
because it converts the imaginary characteristics
into real values. The static normal component of
this stress, usually called the Coulomb’s
component, has been used by Concha and
Bustos (1987), Gidaspow (1986), and Pritchett
et al. (1978).

To place the Coulomb’s stress component in
perspective, the mechanisms of powder
compaction (Shinohara, 1984; Orr, 1966) is
considered. The motivation for the most
generally satisfactory expression is the
experimental observation that plotting the
logarithm of consolidating pressure vs. particle
volume yields a substantially straight line for

both metallic and nonmetallic powders -

undergoing compaction (Orr, 1966). Orr’s
(1966) simple theory was used to derive a
generalised solid elastic modulus coefficient,
G(g), of the form

G(e,) = G, exple(e, —&))] (15)

where ¢ (called the compaction modulus) is the
slope of In(G) vs. &, and & is the compaction
solid-phase volume fraction. The normalising
units factor, Gg, has been taken to be 1.0 Pa for
convenience. For g less than g,", the exponent of
Eq. (15) becomes negative so that the solid
elasticity modulus G becomes smaller as &
becomes smaller. However, for g; greater than
&, the elasticity modulus G becomes larger as

- g Increases, thus preventing the solid-phase
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volume fractions from being much larger than
gs. This generalised form of the solid phase
elastic modulus, G(e,), has also been

incorporated in our computational model, where
¢ =230 and g, = 56.

The viscous terms in the momentum equations,
although numerically small, introduce a damping
effect on the computed values. Pritchett et al.
(1978) expressed the solid viscosity as a
function of the local void fraction. Ding and




Gidaspow (1990) calculated both the solid phase
pressure and viscosity as function of the
fluctuating kinetic energy of particles. Following
their treatment, Zhang and Yu (1996) also
calculated the solid phase pressure and viscosity
distributions in a fluidised bed. In this paper, it
was assumed to be 0.5 Pa s based on rheological
measurement of Grace (1982).

5. COMPUTATIONAL CONDITIONS

To solve the equations of gas-solid flow
listed above it is necessary to specify the
appropriate  boundary  conditions  for
velocities of the solids and the gas, for gas
phase pressure, and the void fraction. The
void fraction is set to 1 where particle-free
gas enters the system. At an impenetrable
solid wall, the gas phase velocities in two
directions are generally set to zero. This no-
slip condition cannot always be applied to
solid motion. Since the particle diameter is
usually larger than the length scale of
surface roughness of the rigid wall, the
particle may partially slip at the wall.
According to the assumption of Eldighidy et
al. (1977), the solid tangential velocity usy, at
the wall is proportional to its gradient at the
wall, i.e.

(16)

where the x direction is normal to the wall.
The slip parameter A, is known to be the
mean distance between particles, and A, can
be estimated by (Eldighidy et al., 1977)

4 7“p 3_T .3
—(—)" =—=d 17
e, 32 = 24; a7
This gives
1
}'P::Slep (18)

Eq. (18) implies that for small particles, the
boundary condition is close to the no-slip
condition.
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The boundary conditions at the symmetric
axis demand that gradient of all variables be
zero. The inlet conditions for the fluidised
bed are indicated in Table 1 such as uniform
velocity u;, and temperature. At the outlet,
the pressure is at an ambient atmosphere
and the mass flux is assumed to be
continuous.

Initially, the fluidising gas uniformly introduced
at the bottom of the bed at the minimum
fluidisation velocity, uny, flows in the vertical y-
direction and leaves the bed at the top. At zero
time, the uniform velocity of the gas is increased
from the minimum fluidisation velocity, umsg to
the required velocity uy. In particular, a
freeboard of which height is the 5 times as the
bed diameter is provided to allow for bed
expansion.

6. RESULTS AND DISCUSSION

The above six nonlinear, coupled, transient,
partial differential equations are solved
numerically using a finite difference technique.
A forward time, centred space discretization is
used for temporal and spatial derivatives. The
advective terms in the momentum equations are
discretized wusing first-order upwinding. A
staggered grid is used in the computations. The
velocities for both phases are stored at the cell
interfaces, while the pressure and void fractions
are stored at the cell centers and the equations
are solved for the primitive variables u,, u,, p, &;
and ;.

Table 1 Fluidised bed operating conditions used
for numerical simulation

Horizontal dimension = 0.2 m
Particle diameter = 500 pm

Initial bed height = 0.3 m

Uniform velocity u;, = 1.2 m/s
Ambient pressure = 1 atm

Vertical dimension= 1.3 m

Particle density = 2660 kg/m®

Min. fluidis. velocity ums = 0.26 m/s
Min. fluidis. porosity en¢ = 0.44
Temperature = 22°C




A rectangular geometry is wused in the
calculation, Table 1 shows the typical data used
in the computation. Nonuniform finite-difference
grids with cell number 13x50 (13 in the x
direction and 50 in the y direction) are used in
the computation. The time step is 2.5x10™s. To
save computer time, the symmetrical assumption
regarding with the centre-line is made. The
computations are continued to 7 s of real time.

As suggested above, slugging may occur with
large particles in relatively small-diameter
fluidised beds. Two major types can be
recognised: round-nose and square-nose. Round-
nose slugs are present in slugging fluidisation
beds consisting of Geldart type A powder. They
are in fact ‘fast’ bubbles that have reached the
size of the bed diameter. The particles flow
down along side a rising slug and a gas-emulsion
interface can be clearly observed. Square-nose
slugs occur in slugging beds with particles that
show ‘slow’ bubble behaviour. No clear slug
boundary can be observed and particles
continuously rain through the void. This type of
slug is rather similar to the behaviour of slow
bubbles in a bed with large particles. Also, in
square-nose slugging, the rise velocity of a gas
void is lower than the superficial gas velocity. It
has already been concluded by Thiel and Potter
(1977) that coarse particles readily form square-
nose slugs in high aspect ratio beds of diameter
up to 22 cm. From these considerations, it is
clear that a small-scale fluidised bed must be in
the square-nose slugging flow regime. In this
modelling, since in the fluidised bed that is of
small diameter with respect to the particle size,
square-nose slugging is expected to occur.

Fig. 1 shows numerical results in the two-
dimensional fluidised bed. From Fig. 1 it can be
seen that at time t = 0.051 s, an almost
rectangular slug has detached from the bottom, a
sharp lifting of the bed is observed. From the
viewpoint of broad concept, it can be regarded
as “a large bubble” which is simple as large as
the containing tube. In particular the first slug
moves up whole across-section and bursts
accompanying with merging at its top. There is a
down ward motion of the particles at the center
of the at later times of the bed and at the walls of
the bed. Att=0.101 s the second slug
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Fig. 1 Shaded void fraction contours
at different times
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Fig. 2 Shaded void fraction contours

is being formed. At t = 0.151 s the second slug
has caught the first slug, broken up the bottom
of the first slug, because both slugs run into at
the area with the bottom of the first slug and the
top of the second slug. Consequently, a
comparatively complicated phenomenon is
observed. Fig. 1 also shows a number of void
fraction shaded contours which clearly illustrate
the slug formation in the bed, the resulting
expansion of the bed, the slug rise in the bed and
the slug eruption at the bed surface. As long as
the computation is continued for long enough, it
is expected that the long-term behaviour is quite
similar under the given conditions, as shown in
Fig. 2. The “macroscopic” steady-state can be
observed from Fig. 3 and Fig. 4, which shows
the porosity variation with times at given points.
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Fig. 3 Porosity oscillation at the position of
x =50 mm, y =170 mm
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Fig. 4 Porosity oscillation at the position of
x =50 mm, y = 380 mm

7. CONCLUSIONS

A two-fluid model has been developed to
simulate the transient dynamics of a slugging
fluidised bed for a period of seven seconds. The
results demonstrate that the model can predict
the formation, rise and eruption of slugs
satisfactorily. In the model the behaviour and
associated flow pattern of gas and solid phases




in a fluidised bed evolve naturally from
numerical  computations, with minimum
assumptions concerning the gas flow distributor
or specification of physical parameters.
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