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Results from a spectral element large eddy simulation of
turbulent pipe flow are presented for a bulk flow Reynolds
number of 36 700. The LES uses a Smagorinsky subgrid-
scale stress model and, because the wall layers are resolved,
van Driest-type wall damping is required. Although the
geometry has cylindrical symmetry, Cartesian coordinates
were employed, illustrating the potential of the method to
model complex geometries with unstructured meshes. Sim-
ulation results compare favorably with experimental mea-
surements at the same Reynolds number, demonstrating the
possibility of performing large eddy simulation with the
method in geometrically more complicated systems.

INTRODUCTION

Large Eddy Simulation (LES) has been used in compu-
tational fluid dynamics simulations since the pioneering
work of Smagorinsky (1963). Despite being applied in
turbulence simulations for at least as long as Reynolds-
averaged (RANS) methods (Launder & Spalding 1971),
it has only been widely used in meteorological applica-
tions (e.g. Mason & Thomson 1987, Mason 1994) and has
had little impact in the process industries. There are three
main reasons for this lack of utilisation of LES techniques.
First, the often complicated nature of the physical systems
involved in process industry applications means that tur-
bulence closures may involve many equations with many
unknown cross-correlations having to be modelled. Al-
though this is also a significant problem in RANS closures,
the time-averaged experimental measurements needed to
estimate arbitrary model parameters are usually signifi-
cantly easier to make than equivalent measurements needed
to estimate parameters for unsteady, sub-grid scale turbu-
lent cross-correlations. Second, the geometrically compli-
cated nature of many process applications has meant that,
unlike most meteorological applications, simple computa-
tional meshes cannot be used and body fitted grids, low-
order finite-element and finite-volume discretisations must
be applied. It is the low-order nature of these numerical
schemes (at best second-order and often first) that precludes
their use in successful LES. The numerical diffusion aris-
ing from many of these schemes is higher than the turbu-

lent diffusion and dispersion errors arising from non-linear
terms soon invalidate the simulation. Finally, the computa-
tional expenseof LES is significant when compared to many
RANS techniques.

The majority of LES of turbulent flows have been per-
formed using either spectral methods, finite difference meth-
ods or mixed spectral/finite difference methods. As a re-
sult, they have been restricted to simple geometries. Spec-
tral element spatial discretisations hold promise for LES
of turbulent flows in complex geometries because of the
method’s ability to provide arbitrary geometric complexity
and high accuracy with low numerical diffusion and dissi-
pation. Despite this, spectral element methods have not yet
been widely employed for LES.

This paper documents results from a spectral element
LES of turbulent pipe flow. Turbulent pipe flow has not
been investigated as extensively as its Cartesian equiva-
lent, turbulent channel flow, although some work has ap-
peared (Unger & Friedrich 1991, Eggels 1994, Orlandi &
Fatica 1997). Despite the comparatively simple geometry,
the presence of a singularity on the axis in cylindrical co-
ordinates gives rise to numerical difficulties not present in
channel flow. This singularity is removed in the current
work by using Cartesian coordinates and a spectral element
discretisation in planes perpendicular to the pipe axis and
Fourier expansions in the axial direction. This may be con-
sidered an example of a ‘complex’ geometry for Cartesian
coordinates and serves as an illustration of the ability of the
method to tackle more complex geometries applicable to in-
dustrial applications.

A bulk flow Reynolds number of 36700 was chosen for
which experimental data is available (Lawn 1971). For this
Reynolds number, the dimensionless wall shear stress (non-
dimensionalised by bulk flow velocity, pipe diameter and
fluid velocity) is τw = 0:00284 and the non-dimensional
wall friction velocity uτ = (τw=ρ)1=2 is 0.053. Based on uτ
and the pipe diameter D, the friction Reynolds number cor-
responds to Reτ = uτD=ν = 1920.

LES METHODOLOGY

In large eddy simulation, an attempt is made to capture the
large scale unsteady motions which carry the bulk of the
mass, momentum and energy in a flow. The length scale on
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which these ‘resolved scale’ motions occur depends primar-
ily on the local mesh resolution. The small scale motions
that occur on length scales smaller than the mesh spacing
cannot be captured and their effects on the resolved scale
motions must be modelled. Because less of the flow is be-
ing modelled in LES than in RANS calculations, it is hoped
that the models will be more accurate as well as simpler to
formulate. Whether or not this hope is justified is not clear
at the current time.

Mathematically, the LES procedure can be thought of as
a convolution of the exact turbulent velocity field u with a
filter function K that gives the resolved scale velocity field
u,

u(r) =
Z

K(∆; jr� r0j) u(r0) d3r0: (1)

The filtering operation is implicit in the formulation (i.e. not
explicitly carried out). Under assumptions which are gen-
erally non-restrictive (see e.g. Leonard 1974), filtering and
differentiation commute, i.e. ∂u=∂x = ∂u=∂x.

An equation for u is obtained by convolving the Navier-
Stokes equations with the same spatial filter function,

∂u
∂t
+ ∇ �uu =�∇ P+ν∇ 2u; (2)

where P = p=ρ for a constant density flow. As in con-
ventional turbulence modelling, the nonlinear terms are not
closed, because the filtered non-linear terms uu cannot be
written in terms of the known resolved components u. To
overcome this problem, a subgrid-scale stress (SGSS) τ is
introduced (in a similar way to RANS modelling), such that
uu = uu+ τ. The momentum equation then becomes

∂u
∂t

+ ∇ �uu =�∇ P+ν∇ 2u� ∇ �τ: (3)

The turbulence modelling task is to estimate the subgrid-
scale stress τ from the resolved velocity field u.

SGSS model

The simplest SGSS models are of the eddy viscosity type,
with the Smagorinsky mixing length model (Smagorinsky
1963) the most well known. It is used in this study. In eddy
viscosity models, it is assumed that the anisotropic part of
τ is related to the resolved strain rate field through a scalar
eddy viscosity,

τ�
1
3

tr(τ)1=�2νt S =�νt
�
∇ u+(∇ u)t

�
; (4)

with the isotropic part of τ being subsumed in P.
In the Smagorinsky model, the turbulent eddy viscosity

is written as

νt = (CS∆)221=2 jSj= (CS∆)2 tr(2S
2
)

1=2
; (5)

where S is the second invariant of the rate-of-strain tensor,
CS is a model constant and ∆= (∆x∆y∆z)1=3 is a measure of
the local grid length scale which varies spatially in the ap-
plication here.

Wall treatment

Rather than use a wall-function approach to the treatment of
solid boundaries, the near-wall regions of the flow are re-
solved in the simulations reported here by ensuring suffi-
ciently fine mesh spacing. In such cases it has been shown
that the eddy-viscosity must be modified using a wall damp-
ing which switches off the eddy viscosity in the near-wall
region.

A common model is van Driest damping, and a form
which gives the correct near-wall asymptotic behaviour of
the SGS stresses is that introduced by Piomelli, Ferziger &
Moin (1987), where the turbulent mixing lengthCS∆ is mod-
ified using

CS∆
h
1� exp(�(r+=A+)3

)

i1=2
; (6)

with r+ as the dimensionless wall-normal distance (R �

r)=(uτ=ν) and the constant A+ = 26. The damping only has
significant effect for r+ < 40. Note that this approach re-
quires that the mean wall shear stress be known in order to
determine r+ = (R� r)uτ=ν. This does not present a prob-
lem in the present application, as the time-mean wall shear
stress can be determined from the Blasius friction factor for
turbulent pipe flow. In more general cases, this approach
would be difficult to implement as uτ would not be known
in advance.

NUMERICAL TECHNIQUE

The spatial discretisation employs a spectral ele-
ment/Fourier formulation, which allows arbitrary geometry
in the (x, y) plane, but requires periodicity in the z (out-
of-plane) direction. The basis of the method as applied
to DNS of the incompressible Navier–Stokes equations
has been described by Karniadakis & Henderson (1998).
The nonlinear terms of (3) have been implemented here in
skew-symmetric form, i.e. (u � ∇ u+ ∇ uu)=2, because this
has been found to reduce aliasing errors.

The method described in Karniadakis & Henderson re-
quires modification in order to deal with the ∇ �τ terms in (3).
The approachtaken here follows that outlined in Karnidakis,
Orszag & Yakhot (1993), where the sum of the molecular
and turbulent eddy viscosities νT = νt + ν is decomposed
into a spatially-constant component νref and a spatially-
varying component νT �νref. The value of νref is chosen to
be approximately equal to the maximum value of νT . This
value is not known a priori, but νref can be adjusted during
the computation without any adverse effects. When solving
(3), the term ∇ �(νT � νref)

�
∇ u+(∇ u)t

�
, is treated explic-

itly, while the term νref∇ 2u, is treated implicitly, thus en-
hancing the overall numerical stability of the scheme.

In order to drive the flow in the axial (z) direction, a body
force per unit mass of magnitude 2τw=Rρ was applied to the
z-component of (3). This approach allows the pressure to be
periodic in the streamwise direction.

As a result of the Fourier decomposition, implementation
of the time integration as a parallel algorithm is straight-
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Figure 1: A two-dimensional section of the 64-element
mesh. The elements near the pipe wall are shrunk in the ra-
dial direction to ensure sufficient near-wall resolution. For
Re=37 600, the first mesh point is at a position given by
r+ � 1.

forward, with inter-process communication required only
during formulation of the nonlinear terms in (3). The
message-passing kernel MPI has been used for this opera-
tion, and the computations reported here were carried out us-
ing eight processors on an NEC SX4-32 supercomputer.

Mesh parameters

The computational mesh is chosen on the basis that the
size of the domain represented is ‘sufficiently large’, with
the mesh spacing decided by resolution requirements.

In the pipe flow geometry, the streamwise dimension
(which is treated assuming periodicity) is usually based on
the integral correlation lengths of turbulence, as obtained
from physical experiment. A length of Lz = 5D was used
in Eggels (1994) and found to be adequate. Here, a value of
Lz = 2πD is chosen.

An important consideration for wall resolving LES is the
mesh spacing near the wall. According to the recommen-
dations of Piomelli (1997) for wall-resolving LES, the first
mesh point away from the wall should be located at r+ < 1.
The streamwise mesh spacing should satisfy ∆z+' 50–100,
and the azimuthal mesh spacing at the pipe wall should sat-
isfy R∆θ+ ' 15–40. For the mesh here, 10th order elements
were used with 192 Fourier modes in the axial direction.
This leads to values of r+ � 1 for the first mesh point away
from the pipe wall, ∆z+� 75 and R∆θ� 45 at the pipe wall.
The corresponding two-dimensional mesh is shown in fig-
ure 1 and there are approximately 1.2 million mesh points
in the three-dimensional domain.

The Smagorinsky constant is the only adjustable parame-
ter in the current simulation. Values as high as 0.2 have been
used in simulations of isotropic turbulence (Smagorinsky
1963) compared to 0.1 in pipe flow simulations (Eggels
1994) and CS = 0:065 in channel flow simulations. Values
of 0.065 and 0.1 are chosen here, and the effect of modify-
ing this constant is discussed. The local mesh lengths ∆x, ∆y
used to compute ∆ were evaluated by dividing the local ele-
ment lengths by the order of the tensor-product shape func-
tions, i.e. (np� 1) where np = 11 is the number of mesh
points along an element edge. The streamwise mesh spac-
ing is ∆z = 2π=192= 0:0327.

Suitable initialisation of the flow proved to be difficult.
Initial attempts involved setting a laminar pipe flow with the
correct volumetric flow rate and a pressure gradient (imple-
mented as a body force) appropriate for the turbulent flow.
When small perturbations were added to this base flow, they
rapidly decayedas the pressure gradient accelerated the base
flow. Successful initialisation was eventually performed at
a low resolution using a laminar pipe flow, but assuming a
pressure gradient appropriate for the turbulent flow (i.e., the
volumetric flow was too high). A small perturbation was
added to this base flow and rapidly grew. As the magni-
tude of the fluctuations increased, the grid resolution was in-
creased in increments to the final values mentioned above.

All mean flow quantities discussed below were gathered
after the flow had reached statistical equilibrium. Time aver-
aging was undertaken for a time approximately equal to the
time taken for the mean flow to traverse the computational
domain twice.

RESULTS

Mean velocity

Mean velocity profiles are displayed in figure 2 in wall units:
U+= u=uτ, r+= (R�r)uτ=ν. For comparison purposes the
Rec = 24600 experimental results of den Toonder & Nieuw-
stadt (1997) are shown, along with a ‘Law of the Wall’ plot
which uses U+

= 5:0+2:5ln r+ in the logarithmic region.

It can be seen that results using CS = 0:1 provide a good
match between the computation and the ‘Law of the Wall’.
They also provide a close match to the experimental results
of den Toonder & Nieuwstadt (1997), from the viscous sub-
layer through the buffer region, log layer and into the core
region of the pipe flow. Although these experimental re-
sults are for a bulk flow Reynolds number of 24 600, by this
Reynolds number the profiles reported by den Toonder &
Nieuwstadt (in wall coordinates) had ceased to change in
the buffer layer and log region. The results for CS = 0:065
under-predict the axial velocity in the log region and slightly
over-predict it in the core flow. The value CS = 0:065 has
previously been shown to be the optimal value for channel
flow (e.g. Blackburn 1998). The results here suggest CS =

0:1 is optimal for pipe flow. Thus the Smagorinsky constant
needs to be tuned for the flow under investigation, which is
a weakness shared by many RANS models. The deficien-
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Figure 2: Mean velocity profiles. , Law of the Wall;
�, Experimental results of den Toonder & Nieuwstadt at
Re=24 600; �, Numerical results with CS = 0:1; 4, Numer-
ical results with CS = 0:065.

cies of simple turbulence models with adjustable constants
are clearly highlighted.

Velocity fluctuations

The resolved-scale r.m.s velocity fluctuations (normalised
by the friction velocity, uτ) from the LES results are com-
pared with the experimental measurements of Lawn (1971),
at the same Reynolds number, in figure 3.

Figure 3: Resolved scale fluctuating velocity components
normalised by the friction velocity, Uτ . The lines are for re-
sults calculated here and the symbols are results presented
in Lawn for the same Reynolds number.

It can be seen that agreement is good, although there are
two points worth mentioning. First, the sub-grid scale con-
tributions to the r.m.s. velocity components have not been
taken into account in the LES results, and if done so, they
would increase the LES results slightly. Second, there is
a noticeable ‘lumpiness’ to the LES profiles, especially for

the radial velocity component. This lumpiness is associ-
ated with the location of element boundaries, and illustrates
one problem with the current numerical method when used
for LES simulation. The computed solutions using a spec-
tral element method have C0 continuity at element bound-
aries, and thus derivatives may be discontinuouson opposite
sides of an element boundary node. As the spatial resolu-
tion improves and all flow features are resolved, the errors
associated with this lack of C1 continuity decrease. How-
ever, the underlying assumption in LES is that the flow is
not fully resolved and thus discontinuities in derivatives at
element boundariesmay contribute to exaggeratedestimates
of eddy viscosity and other effects of an unphysical nature.
Although this may be an important issue in obtaining accu-
rate estimates of high-order turbulence statistics, it appears
to have less of an impact for quantities such as mean velocity
and is unlikely to lessen the utility of the method in applica-
tions.

Reynolds shear stress

Figure 4 compares the predicted mean resolved-scale
Reynolds shear stress profile with the experimental results
of Lawn (1971) at the same Reynolds number. The results

Figure 4: Resolved scale Reynolds shear stress. The solid
line are LES results and the symbols are experimental values
of Lawn.

are in reasonable agreement, although the LES results
over-predict the Reynolds shear stress by up to 25% near
the pipe centerline. As with the r.m.s. velocity fluctuations,
the effect of the spectral element discretisation can be seen
in the slight lumpiness of the profile.

Qualitative flow features

An instantaneous cross section of the flow in one quad-
rant is presented in Figure 5. The unsteadiness in the
flow can clearly be inferred from the significant amount of
small-scale structure visible in this image. Also seen at the
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Figure 5: Contours of instantaneous streamwise velocity
and in-plane velocity vectors in one quadrant of the pipe
flow.

1 O’clock position near the wall is an ejection event (dark
contour region with in-plane velocity vectors directed away
from the wall) which results in a low-speed streak in the
boundary layer.

These streaks are also clearly seen in Figure 6 which
shows contours of streamwise velocity on the pipe wall at
r+ � 20. From these results, a mean spacing of the wall
streaks is estimated to be approximately 150 wall units, al-
though the two-point correlations that would quantify this
more accurately are yet to be performed.

A contour of the fluctuating component of the out-of-
plane velocity in a plane through the pipe centerline is
shown in Figure 7. Superimposed on top of the small-scale
turbulence in the core region of the flow, large scale struc-
ture, on the scale of the pipe diameter, is clearly seen. Near
the pipe walls, (the left and right sides of Figure 7) the ejec-
tion events described earlier are seen as the light and dark re-
gions that leave the pipe walls at an angle of approximately
15–20�.

DISCUSSION

The results obtained from a spectral element LES simu-
lation of turbulent pipe flow are seen to be in good agree-
ment with experimental measurementsat the same Reynolds
number. These results indicate that spectral element tech-
niques can be employed for LES in complex geometries us-
ing unstructured meshes and attain a good degree of suc-
cess. The results predicted here are similar to those obtained
with more standard finite difference/volume discretisation
schemes with a similar number of mesh points (e.g. ap-
proximately 800 000 mesh cells were used in the LES sim-
ulations of Eggels 1994). The simulation of the cylindrical

-0.5 0.0 0.5
1

2
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Figure 6: Contours of instantaneous streamwise velocity
at r+ � 20. The flow is from bottom to top and only half of
the pipe-wall is shown, projected onto a flat surface.

pipe geometry in a Cartesian coordinate system gives a clear
demonstration of the method’s ability to simulate non-trivial
geometries. However, with the current method an a priori
knowledge of the wall shear stress is required and the most
important development that remains to be undertaken is the
implementation of sub-grid scale stress models that do not
require this.

Although flows such as pipe flow are geometrically sim-
ple, their accurate simulation at high Reynolds numbers us-
ing techniques such as LES are in some ways more diffi-
cult than flows in complicated geometries. Unsteadiness,
the transition to turbulence and its subsequent maintenance
in pipe flow are due to hydrodynamic instability alone, and
any numerical scheme that simulates this flow must have
high accuracy with low numerical diffusion and dispersion.
In contrast, in many process applications, unsteadiness and
subsequentgeneration of turbulence is a result of entry flows
(jets, pipes, nozzles, etc.) or vortex shedding from solid sur-
faces (impellers, baffles, etc.). In these latter flows, there is
an on-going source of unsteadiness that will assist in the on-
set and maintenanceof turbulence in a numerical simulation.
Because such sources are absent from pipe flow, its accurate
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Figure 7: Contours of instantaneous out-of-plane velocity
in a plane through the pipe centerline.

simulation is an indication of the reliability of the method.
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