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ABSTRACT
In the present paper a computational method based on a
pressure correction technique and coupled with a two-
equation turbulence model is presented for the three-
dimensional viscous flow computation in low speed axial
fans and compressors. A wall function is also used for
reducing the number of meshes. The time-averaged
Navier-Stokes equations, written in a generalized form, are
expressed by curvilinear coordinate system to fit the
complex configuration of blade channel. The mesh applied
here is a general structured body-fitted grid system where
the curvilinear coordinate lines are coincided with the
boundaries of the flow domain. In this method the
governing equations are still expressed by the Cartesian
coordinate system, and a coordinate transformation
technique is used. The contravariant velocity components
are also used only for simplifying the expression. Their
directions are agreed with the curvilinear coordinate lines.
The predicted results are presented here in the paper and
compared with experiment.
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INTRODUCTION
Axial fans and compressors currently find a wide range of
applications in chemical, minerals and process industries
due to their ability to achieve high efficiency and high
flow rate. Designs of modern high performance axial
compressors trend continue to increase total pressure ratio
and efficiency, and reduce weight. Lacking the knowledge
of the flow structure inside turbomachine is one of the
main obstacles for its development. The rapid progress of
computer science and technology and computational
technique enable us to apply CFD for predicting the flow
phenomena in the design step of these machines.
The objective of this paper is to present a method for
calculating the 3-D flow and to compare the results with
experiment. As an example, a low speed single rotor
compressor was calculated. The calculated results were
compared with the experimental data obtained by the
Beijing University of Aeronautics and Astronautics (Jiang
et al., 1992).
The current method in turbomachinery computations is
based on the Reynolds-averaged Navier-Stokes equations

with a two-equation turbulence model. The pressure
correction method proposed by Launder, Spalding (1974)
and Patankar (1980). It with great success initially is used
for low speed and incompressible flows and later for
compressible flow as Hah (1980), Rhia et al (1984),
Tourlidakis et al (1993).
The present pressure correction method is derived from
authors’ previous method (Chen and Xu, 1990, 1991). The
difference of the present method from the previous method
is only the use of the velocity components of Cartesian
coordinates as the variables to be solved. The present
method is used to calculate the flow in the single rotor test
compressor. The in-depth validation includes span-height
distributions of pitch-wisely mass-averaged parameters,
contours of parameters on different coordinate surfaces. It
is shown that calculation results mostly are closed to the
measured data.

NOMENCLATURE

µCCC ,, 21
     empirical coefficients (see

Eqs.(7),(11))

pc        specific heat at constant pressure

j
j ee
!!

,          base vector and reciprocal base vector

zyxvis fffF ,,,
!

    viscous force vector and its x-, y- and

z-components

j
j ff ,    contravariant and covariant compo-

nents of viscous force vector
G

          
production rate of turbulent kinetic
energy (see Eq.(12))

,g
ij

ij gg ,        metric tensors

,...,,,,,,, nmlkjihg  indices

)))(((5.0 RRWWTcI p

!!!!!!
×Ω×Ω+⋅+=    rothalpy

zyx iii
!!!

,,       unit vectors along x-,y- and z-

coordinates

J       Jacobian , gJ =
,P 10P  total pressure and inlet total pressure

   total pressure at inlet

p    static pressure
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tl Pr,Pr laminar and turbulent numbers,

respectively
R    gas constant

j
j rrR ,,

!
   radius vector and its contravariant and

covariant components

21 , RR radius at inlet and outlet (see Eq.(19))

ΦS   source term (see Eq.(8-11))

T  absolute temperature

tiptip RU Ω=    rotating speed at tip

21,, tt VVV
!

absolute velocity vector and its inlet

and outlet circumferential velocity

W
!

,
j

j WW , , j
j ww , relative velocity vector and its

physical contravariant, physical
covariant, contravariant and covariant
components

zyx WWW ,,  or zyx www ,,   x-,y- and z-components of

               relative velocity vector
β    relative flow angle

ijΕ   component of viscous strain tensor Ε
!!

ε    dissipation rate of turbulent energy
jkiε ,

jki
ε        Eddington tensors

εκ ,,,,,,1 Iwww zyx=Φ  one of the variables to be solved,

*Φ           dissipation function (see Eq.(13))

φ           flow rate coefficient, tipx UV /=φ

εκ σµσµλµµµ /,/,/,,,,0 ttpeffeffeffeff c=ΓΦ   one of

           the effective diffusion coefficients,
k
ijΓ   Christoffel symbol

κ turbulent kinetic energy

)(,, λλλλ orefftl laminar, turbulent and effective

            coefficient of thermal conductivity
)(,, µµµµ orefftl laminar, turbulent and effective

            dynamic viscosity

j
j ωω ,,Ω

!
    angular velocity vector, its contra-

variant and covariant components

ijΠ      component of viscous stress tensor Π
!!

ρ    density

pς pressure loss coefficient

( ) j
         covariant derivative of ( )

NUMERICAL METHOD
Reynolds equations in tensor form
On the basis of governing equations expressed by non-
orthogonal curvilinear coordinate system a pressure-
correction method for 3-D turbulent flow in
turbomachinery is present in the present paper. The two-
equation turbulent model and a wall function are used.
The Reynolds averaged Navier-Stokes equations can be
written in tensor form as follows:

1. Continuity equation:
0)(/ =+∂∂ j

jwt ρρ             (1)

2. Momentum equation

in je
!

- direction:

jki
ik

j
i

jij wrwwtw ερωρρρ 2/ 2 +Ω−+∂∂
(2)

l
jl

iml
jlim pggg −Π= )(

in je
!

- direction:

jki
ik

jij
i

j wrwwtw ερωρρρ 2/ 2 +Ω−+∂∂
       

iiml
im pg −Π= )(               (3)

3. Energy equation:

+∂∂=+∂∂ tpIwtI i
i // ρρ

ilmj
ljim

imj
jim

im
im ggwgTg ΕΠ+Π+)( λ   

   
(4)

The viscous stress is the function of velocity as:

)
3

2
2( Wdivgw

x

w

x

w
E ij

k
ijkj

i
i

j
ijij

!
−Γ−

∂
∂+

∂
∂

==Π µµ    (5)

There is a summation over all repeated indices. The
rotation is along the x - coordinate axis.  The relationship
between relative and absolute velocity vectors is

RVW
!!!!

×Ω−= . The first terms of the right-hand side of the
momentum equations, Eqs.(2) and (3), are the
contravariant and covariant components of viscous force
vector 

visF
!

, i.e. j
visf )( and jvisf )( . The second term on the

right-hand side of the energy equation is heat-transfer term
which represents the heat added from outside to the
present control volume of the fluid per unit time. The third
and forth terms are the rates of work done by viscous
stresses consist of two parts. They are: the first one is
caused by the change of the viscous forces, that is shown
in the third term on the right-hand side of the energy
equation, which is the dot product of relative velocity and
viscous force vectors WFvis

!!
⋅ . The second part is the forth

term caused by the deformation of the fluid on which the
viscous stresses act. We call it dissipation function *Φ .
These equations are conveniently and easily used for the
computational domain with complex configuration. In
these cases the unknown variables of the momentum
equation to be solved are the contravariant and covariant,
respectively.

Governing equations expressed by Cartesian
coordinate system
In the present paper the x-, y- and z-components of the
momentum equation are used, and then the variables of the

momentum equation are yx ww ,  and zw . The above-

mentioned governing equations for steady flow coupled
with εκ −  model expressed by the Cartesian coordinate
system can be written in a generalized form as follow:

       
z

w

y

w

x

w

t
zyx

∂
Φ∂+

∂
Φ∂

+
∂

Φ∂+
∂

Φ∂ )()()()( ρρρρ



469

ΦΦΦΦ +
∂
Φ∂Γ

∂
∂+

∂
Φ∂Γ

∂
∂+

∂
Φ∂Γ

∂
∂

S
zzyyxx

)()()(     (6)

where: Φ  denotes the variable to be solved,
;,,,,,,1 εκIwww zyx=Φ  

ΦΓ  is the effective diffusion

coefficient and ΦS  is the source term. They are defined

as: εκ σµσµλµµµ /,/,/,,,,0 ttpeffeffeffeff c=ΓΦ  
and

εκ SSSSSSS Iwww zyx
,,,,,,0=Φ  

for continuity equation, three

components of momentum equation, energy equation,
−κ  and −ε equations, respectively. The empirical

coefficients are 0.1=κσ  and 3.1=εσ . The effective

dynamic viscosity effµ
 
and effective conductivity 

effë

can be determined as: tteff µµµ +=  and =effλ =+ tl λλ
)Pr/Pr/( ttllpc µµ + . Later we will denote effeff λµ ,  by

λµ, , respectively. The turbulent dynamic viscosity is

calculated as follows:

εκρµ µ /2Ct =                  (7)
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      (9)

ρεµκ −= GS t
                  (10)

κρεκεµε /)/( 2
21 CGCS t −=             (11)

where 
visFG
!

,, *Φ  are the production rate of turbulence

kinetic energy, dissipation rate and viscous force,
respectively. They are calculated as follows:
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In Equations (7) and (11) µCCC ,, 21  are the empirical

coefficients of εκ −  model. They are 1.47, 1.92, 0.09,
respectively.

Coordinate transformation technique
The mesh employed is a general structured grid system
where curvilinear coordinate lines coincide with the
boundaries of the flow domain. Therefore, it is need to use
the coordinate transformation technique to have a body-
fitted coordinate system. Then, introducing new

independent variables, ),,(11 zyxxx = , ),,(22 zyxxx = ,

),,(33 zyxxx = , the generalized form of the governing
equations, Eq.(6), can be expressed by the body-fitted
curvilinear coordinate system as follows:
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The physical contravariant relative velocity components,
321 ,, WWW , are defined by:
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    (17)

where J  is Jacobian of coordinate transformation.
The source term can be written as:
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=
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ΦΦ

ΦΦ

Φ

(18)

Solution procedure
The discretized algebraic equations of generalized Eq.(16)
are solved by using the pressure correction method. A
central volume approximation is used for all diffusion
terms, and an up-winding scheme is used for convection
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terms. The difference equations for the pressure
correction, the energy, the turbulent kinetic energy and
dissipation rate can be written in a generalized version.
The above discretized algebraic equations are solved by
successive iterations with the linear relaxation method.
Since the solution procedure has been given in many
literatures, we would not go through it.

RESULTS
As a calculated example a single rotor test compressor of
BUAA is used. It is consisted from 17 twisted blades
mounted on the hub. The tip and hub diameters are 1000
mm and 600 mm, respectively. The tip clearance is about
one mm. The design rotating speed of the rotor is 1200
rpm. Some of the calculated results are compared with
experimental results. A body-fitted non-uniform H-type
grid system with the grid number of 30x98x35 is applied
for the calculation (see Figure 1). It is automatically
generated by the GRID_TURBO3 code proposed by the
authors. From the figure it is clearly seem that near wall,
blade surfaces, inlet and outlet boundaries finer meshes are
used.

Figure 1: Three-dimensional grid system of single rotor
compressor

Figure 2: Blade profiles of different span height radius

In Figure 2 the blade profiles at different radius are shown.
Fig.3 presents the computational domain. Station 1 and
station 4 are inlet and outlet of the computational domain,
respectively. Station 3 is the measured plane located at 20
mm from the trailing edge of the rotor blade row. The

design condition is at the point which flow rate coefficient
equals 0.58 approximately. The calculated pressure rise is
a little bit lower than the measured. The following
calculated results are compared with experiment only for
the design condition.

Figure 3: Computational domain

In Figure 4 the grid point length of x-, circumferential and
span-wise directions are shown. From this figure it is seen
there are very smooth coordinate lines. Near inlet, outlet
boundaries and the mid-blade-channel the meshes are
coarse, and near blade surfaces the meshes are finer.

Figure 4: Relative length of grid points for three directions

Figure 5: Comparison between calculated and measured distri-
butions of static and total pressure rises along span height
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Span height distributions of pitch-wisely mass-average
parameters
All averaged parameters at below are obtained by the
pitch-wisely mass-averaging procedure. The span-wise
distributions of static and total pressure rises calculated
and measured are plotted in figure 5. The calculated
results are lower than the measured. In Figure 6 the
comparison between the calculated and measured data of

absolute velocity components ,/ tipx UV  ,/ tipt UV

tipr UV /  is illustrated. Figure 7 shows the span-wise

distributions of calculated and measured flow rate

coefficient φ  and pressure loss coefficients Pς . The

latter is defined as follows:

2/

/)()( 101122

tip

tt
P

U

PPVRVR ρς
−−Ω−Ω

=        (19)

Figure 6: Comparison between calculated and measured absolute
velocity components along span height at exit from rotor(st.3)

Figure 7: Comparison between calculated and measured
distributions of flow rate and pressure loss coefficients

As shown in the figure at center of the span the calculated
data are very closed to the measured data. The relative
flow angle is one of the important design parameters. In
Figure 8 the comparison between its calculated and

measured distributions is plotted.
From above figures it is seen that the results in the region
near mid-span the calculated by the present method are
agreed with experiment very well. All results at hub and
tip differ from the experiment. This is because in the
present paper the tip and hub clearance effects have not
been taken into account. Due to the inadequate accuracy of
manufacturing there exists a gap between the hub surface
and the rotor blades. From experience it is seen with
increasing tip clearance the pressure loss coefficient is
increased. The effect of the tip clearance on the flow
feathers for the present single rotor compressor will be
discussed in the another paper.

Parameters contours on the surfaces of revolution and
the constant- x -coordinate surfaces
In this suction we will show the calculated results on the

1S - and 
3S -coordinate surfaces, i.e. on the surfaces of

revolution and the constant- x -coordinate surfaces,
respectively, and their comparison with the measured data.
Unfortunately there are no measured data of pressure
contours on the surface of revolution. We will show them
only for illustration. In Figure 9 the static pressure
contours on the surfaces of revolution at hub-, mid- and
tip-span heights.

Figure 8: Comparison between calculated and measured relative
flow angle distributions along span height

For the constant-x-coordinate surfaces the calculated
contours are shown and compared with experiment at the
exit from the rotor (st.3). Station No.3 is the measuring
plane located at 20 mm out of the trailing edge of the rotor
blade row. At this plane all the velocity, pressure contours
were calculated and compared with experiment. In this
paper we could not show all of them due to the limitation
of pages. Due to the importance of the relative flow angle
their calculated contours are plotted in Figure 10. The
calculated data are as the lower figure and the measured
data are also plotted in the upper one. They are closed
each to other.
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Figure 9: Static pressure contours on the surfaces of revolution at tip-(right), mid-(central) and hub-(right)span
heights

CONCLUSIONS
In the present paper a pressure correction method is
presented. It can be used to calculate the flow field in fans
and compressors. As an example the 3D turbulent flow in
a test low-speed axial single rotor compressor was
calculated. At beginning of the paper the basic equations
of the turbulent flow in turbomachinery are given. A
coordinate transformation technique is used in this paper.
The equations are written in a generalized form for
adapting the body-fitted coordinate system. The in-depth
validation includes span-height distributions of pitch-
wisely mass-averaged parameters, contours of parameters
on different coordinate surfaces. For comparison the
calculated results are plotted together with measured data.
It is shown that the calculation results are closed to the
experiment. Due to tip clearance effect that has not been
taken into account there exists some discrepancy in the
near wall region. In the future studies of appropriate
consideration of the tip clearance effect will be carried out.
The present work has proved that the method can be used
for studying the flow phenomena in turbomachinery.
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Figure 10: Contours of relative flow angle at st.3 (rotor exit)
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