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ABSTRACT

A novel approach was developed for the problem of mass
transfer from a solid metal inclusion surrounded by the
liquid current-carrying metal. The primary mechanism of
this process is diffusion under electric current action. The
named phenomenon provides more effective diffusion for
the alloying process under some conditions than the usual
atomic diffusion. Computer calculations and experimental
investigations are presented that show this. The systems
investigated were Cu(sol)-Al(liq) and Ni(sol)-Al(liq)
compositions. The relation between the conductivity of a
solid inclusion and the surrounding liquid metal are
opposite in the two systems.
Knowledge of the phenomena analysed might be useful for
the improvement of alloying technologies.

NOMENCLATURE

B magnetic induction
C const
c concentration
D diffusion coefficient
E≡E(α,β) elliptic function of 1st kind
F≡F(α,β)  elliptic function of 2nd kind
i unit vector
f Lorentz-force
H magnetic intensity
J electric current density
K parameter
k coefficient of cell
p pressure
Q activation energy
R const
r radial coordinate
Sh Sherwood number (criterion)
T temperature
U velocity of fluid far of inclusion
v velocity
V reduced velocity
y part of radial distance

α parameter
Γ(x) gamma function
ζ parameter
η dynamic viscosity
ϑ angular coordinate
Λ parameter

λ conductivity
µ  magnetic permeability
ϕ parameter
ψ Stokes' stream function

Subscripts
a approximate
el electrical case
e surrounding medium
i inclusion
Me metal
r radial value
s outer surface of layer e
ϑ tangential value
ϕ azimuth
∞ infinity
0 zero value
1…4 ordinal number

INTRODUCTION

A series of solutions to the problem of interaction between
a foreign solid inclusion and a surrounding current-
carrying liquid substance under the passage of a direct
current is known: in case of a non-conductive inclusion
(Chow, 1966) and in case of a conductive inclusion
(Raychenko O.I., Raychenko O.O., and Chernikova, 1993;
Raychenko O.I., Raychenko O.O., Chernikova, and
Miroshnichenko, 1993). Inclusions in suspension have, as
a rule, conductivity and some other properties different
from the external medium, and also often have a higher
melting point. In manufacturing or operations with alloys
of some compositions, there is the need to understand the
character of interactions between such foreign inclusions
and the surrounding current-carrying medium. Processes
such as mass-transfer can arise due to passage of the
electric current in this situation.

MODEL DESCRIPTION

We use the following conventional scheme (Fig. 1). There
is a solid sphere i (with radius ri and electric conductivity
λi), a spherical layer e (outer radius re=kri, where k is the
coefficient of the cell) filled by a liquid conductor (with
the electrical conductivity λe and viscosity η). The origin
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of the spherical coordinate system (r, ϑ) is located in the
center of the sphere. The direct current is passing through
the whole model in direction ϑ=0 (direction OA, see Fig.
1.) with current density far away the inclusion that is
equal to J0. The present model has axial symmetry. In
general, the mentioned scheme may be applied to
heterogeneous compositions with different components
where the whole volume is exposed at a temperature
between melting points of the two component substances:
the low-melting ingredient therefore exists in the liquid
state. We divide in mind a whole suspension up into a
number of cells with one inclusion in center of each cell.
Then let us change a cell-polyhedron to a cell-sphere with
the same volume.

i

e

r i

k r i

ϑ
A

0

J 0

Figure 1 : Scheme of the model.

In the present case two pairs with the following
component compositions: Cusol.-Alliq. and Nisol.-Alliq. were
taken for theoretical comparative analysis and practical
test. A number of elements such as that depicted in Fig. 1
composes the suspension. All physical characteristics of
the mentioned components are the same ones for
conditions that are valid for experiments, they are taken
from (Sosedov, 1975; Kikoin, 1976; Samsonov, 1976;
Drits et al., 1985; Larikov et al., 1987) and placed in
Table 1.

Components
Parameter

Cu Al Ni
λ, Ohm-1 m-1 23.4×106 10.0×106 2.3×106

η, MPa s - 1.076 -
System

Cu-Al Ni-Al
cs 0.31 0.0325
D0, m

2 s-1 0.15×10-4 1.1×10-6

Q,, kJ mol-1 126.4 83.32
Table 1: Properties of the systems investigated.

THEORETICAL ANALYSIS

Convection movement at electric current passage

Suppose that the basic Navier-Stokes equation is one of
electro-magneto-hydrodynamics in inertialess and non-
induction approximation (Chow, 1966)

fv =+ curlcurlpgrad η , (1)

where f=J×B is the spatial Lorentz-force, p is the pressure,
J is the current density, B is the magnetic induction, v is
the velocity of liquid. The velocity components of the
Lorentz electroconvection (the spatial Lorentz-force f is
placed in the right side of eq. (1)) are
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where ψ is Stokes' stream function. To determine the
velocity components we will apply the following boundary
conditions:
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 where vϑ,∞ is the velocity ϑ-component in the model solid
particle – infinite liquid medium (Raychenko O.I.,
Raychenko O.O., and Chernikova, 1993; Raychenko,
Popov, Burenkov., Istomina, and Derev'yanko, 1997), i.e.
the present scheme is the "soft cell" unlike the previous
case studied (Raychenko O.I., Raychenko O.O., and
Chernikova, 1993; Chow, 1966). First, by analogy with
(Tikhonov and Samarsky, 1953) we can write expression
for the current density in medium e:
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where  ir , iϑ are the unit vectors, Λ⋅= ii rr ' ,
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Furthermore, it is possible to obtain the magnetic intensity,
arising from the electric current (Raychenko O.I.,
Raychenko O.O., Chernikova, and Miroshnichenko,
1993):
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where µ0 is the magnetic constant, iϕ is the azimuth unit
vector. Introducing eqs. (4) and (5) into eq. (1) after
analogous calculation as in (Chow, 1966), we obtain
Stokes' stream function
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where µ=µ0µMe , µ0 is the magnetic constant, µMe is the
relative magnetic permeability of the liquid metal (usually
µMe≈1), C1, C2, C3, and C4 are the constants, η is the
dynamic viscosity. Substitution of eq. (6) into eq. (2) gives
the velocity components:
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The constants C1, C2, C3, and C4 can be determined from
eq. (3) which are the boundary conditions (Raychenko et
al., 1997). The velocity magnitude is determined from the

usual expression: 22
ϑvvv r += . The computation based

on formulae (7), (8) gives a reconstructed picture of the
velocity field around the inclusion i which is caused by
Lorentz electroconvection (Fig. 2). Figure 2 shows
schematically the field of the dimensionless normalized
(reduced) velocities of such a moving liquid in the first

quadrant of the cell 
32
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η=  (for example, in the

system Cusol.-Alliq.) at ri~35×10-5 m, J0=4.0×106 A m-2,
temperature 1000 K, and k=2. The velocity component vr

near the line ϑ=0 has a negative value. Figure 2 is a
conventional vector arrow plot.
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Figure 2: The velocity field computed using eqs.
(7), (8).

Diffusion from solid inclusion into liquid current-
carrying medium under electric current action

If we suppose y=r-ri<<ri then it is possible to write Stokes'
stream function approximately as
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Let us apply Levich's method (Levich, 1959) (see for
comparison Raychenko O.I., Raychenko O.O.,
Chernikova, and Miroshnichenko, 1993 also).
We use the equation of the convection diffusion as a
starting equation the following one (Levich 1959)
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where c is the concentration of diffusant (substance
diffusing from the surface inclusion i),  D is the diffusion

coefficient that is 




−= RT

QDD exp0
, Q is the

activation energy, R is the gas constant, T is the
temperature, U is the velocity of a fluid far off an

inclusion, ψ=-ψa . In eq. (11) it is necessary to
replace the factor (3/4)U by the expression
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Thus, we obtain the equation for the stationary Lorentz
diffusion from the surface solid inclusion into the current-
carrying liquid medium
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Let us determine the behaviour of the diffusant in the layer
y<0.1ri near the surface of inclusion using data from
(Kikoin, 1976). Derivative ∂c/∂y gives the r-component of
the concentration gradient near the surface of inclusion:
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E≡E(α,β), F≡F(α,β) are the elliptic functions of 1st and 2nd

kinds respectively, ))2sin(2arcsin( ϑα = .

The concentration gradient is computed on the basis of eq.
(13) for the layer y<0.1ri and is shown in figure 3.
Parameters Λ and |λe-λi| (see Table 2) influence the
calculated concentration gradient (Fig. 3).

System
Value

Cu-Al Ni-Al
Λ -0.85 0.88

|λe-λi|, Ohm-1 m-1 13.4×106 7.7×106

max. 83.83 -50.08
∂c/∂y

min. 2.36 -3.94

Table 2: Values used for the calculations.
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Figure 3: Reconstruction of the concentration gradient in
3D plot for layer y on the surface of inclusion; a) the case
of Cu-Al, b) the case of Ni-Al.

Dividing the full diffusion flux under electric current
action by the full diffusion flux from the surface of the
spherical inclusion in case of the stationary atomic
diffusion by analogy with (Raychenko O.I., Raychenko
O.O., Chernikova, and Miroshnichenko, 1994; Raychenko,
Popov, Burenkov, Istomina, and Derev'yanko, 1997) we
obtain the expression for the Sherwood number:
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Figure 4 shows the dependence of the Sherwood number
upon the radius of inclusion. Plots showing the
dependences of values Sh upon parameter k (Fig. 4)
present the possibility to determine best conditions for
alloying. There is a possibility to increase the rate of
alloying without increase of the current density through
suspension, but by variation of parameter k.
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Figure 4: The Sherwood number as function of k; �-
4.36×106 A m-2, �- 3.78×106 A m-2, ✕✕✕✕ - 3.20×106 A m-2;
a) the case of  Cu-Al, b) the case of Ni-Al.

For comparison with theoretical analysis, experiments
with some systems were performed. The average
concentration Cu in Al(liq) was found to be ~37 wt. % (the
theoretical computation gives ~12 wt. %); while the
average concentration Ni in Al(liq) was found to be ~54 wt.
% (the theoretical computation gives ~24 wt. %). These
results are for the following conditions: ri~35×10-5 m,
J0=4.0×106 A m-2, temperature 1000 K, and k=2. The
higher experimental values could be caused by the usual
diffusion process that will occur simultaneously with the
diffusion caused by electric current action. The latter is
the only source of diffusion that is taken into account only
in this work.

CONCLUSION

An algorithm for the calculation of the reduced diffusion
flux (its measure is the Sherwood number) during the
passage of the electric current in the liquid metal
surrounding a solid sphere has been developed (Fig. 5).
This approach has been applied to models of two

suspensions. The dependence of the Sherwood number
upon the coefficient of the cell (this value is a measure of
inclusion separation) is a decreasing function with a
secondary maximum. The proposed simulation can be a
basis for calculations of the mass transfer in electro-
technological processes.

conditions for determination of velocity components

Stokes’ stream
function (ψ)

velocity components
(vr, vϑ)

equation of convection
diffusion in current-
carrying liquid under
electric current action

concentration and concentration gradient
near the surface of inclusion (c, ∂c/∂r)

Sherwood number (Sh)

preparation of data for
future computer calculation

in frames of analytical
investigations

working out of  a
calculation algorithm
for solution of  the

problem with the help
of computer programs

obtaining of
numerical results
with the help of

computer programs

processing of the obtained
data (numerical results)
with special computer

programs

conclusions

Figure 5: The algorithm of computation (scheme).
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