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ABSTRACT

This paper presents a study of the self–similarity of three–
dimensional spatially–developing plane wakes. The self–
similarity in the near field region of the plane wake flow is
addressed with reference to the mean velocity, mean vortic-
ity and second order velocity correlations. The data for this
investigation was calculated using a direct numerical sim-
ulation of a three–dimensional spatially–developing plane
wake.
key words: Self similarity, Wake flow, Spatially develop-
ing, Hybrid numerical methods

INTRODUCTION

Self–similar solutions are solutions which depend on a cer-
tain combination of the independent variables rather than
all of the variables. The hypothesis of self–similarity or
self–preservation of the plane wake was first proposed by
(Townsend(1956)). Self–similarity in the wake flow is real-
ized if the normalized mean velocity and turbulent statistic-
s (using deficit and wake halfwidth as velocity and length
scales) are independent of streamwise location. (Schlicht-
ing(1968)) studied the self–similarity of small–deficit plane
wakes and introduced a quadratic approximation for the
defect velocity. Experiments conducted on unforced, s-
mall deficit wakes and in the far region of forced wakes
(Corke et al. (1992); Marasliet al. (1991); Marasli
et al. (1992); Wygnanskiet al. (1986)) show that the
mean velocity, Reynolds stresses and turbulent intensities
are self–preserving. These findings have also been sup-
ported in the subsequent temporal simulation of (Ghosal &
Rogers(1997)) and the recent direct numerical simulation of
temporally–evolving plane wakes by (Moseret al. (1998)).
However, (Wygnanskiet al. (1986)) suggested that univer-
sal self-similarity does not exist due to the dependency of
the normalized mean velocity, length scales, distributions
of turbulence intensities and Reynolds stresses on the ge-
ometry of wake generators.

An investigation of self–similarity in the near wake re-
gion has not been previously performed. This issue is ad-
dressed in this paper. This investigation also shows the
streamwise location suggesting the start of self–similarity.
Four cases using different upstream boundary conditions
form the basis for this study.

Case 1 is a wake flow perturbed with a two–dimensional
fundamental mode at the forcing frequency of!f = 0:614

with a superimposed three–dimensional fundamental mode
at the frequency of0:307. These frequencies correspond to
the maximum growth rate for two–dimensional and three–
dimensional disturbances, respectively.

Case 2 is a wake flow perturbed with a combination of
the two–dimensional fundamental at!f = 0:614 and the
first subharmonic mode at!f = 0:307 superimposed on
a three–dimensional fundamental mode at the frequency of
0:307.

Case 3 is a wake flow perturbed with a three–dimensional
fundamental mode at a frequency of0:307 and a combi-
nation of two–dimensional fundamental, first subharmonic
and second subharmonic modes at the frequencies0:614,
0:307 and0:1535, respectively.

Case 4 is a wake flow in which the streamwise veloci-
ty component at the inlet boundary is perturbed by a two–
dimensional fundamental mode at frequency of0:614. The
cross–stream and spanwise velocity components at the in-
flow boundary are such that the streamwise vorticity at the
inlet boundary of the computational domain is of the fol-
lowing form

!1 = 0:1(2 + (2�=Lz)
2� 4y

2
) exp(�y2) sin(2�z=Lz)

The simulation parameters are :Re = 500, Nx = 240,
Ny = 96, Nz = 8, U0(y) = 1 � 0:692 exp(� ln(2)y2),
Lx = 70 andLz = 8:234. The simulations were dealiased
in y andz directions. The modal amplitude of the forcing
functions was set at ten percent of the freestream velocity.

MATHEMATICAL FORMULATION AND NUMERI-
CAL METHOD

The data for this investigation was generated by solving
the rotational form of the Navier–Stokes equation for a
spatially–developing plane wake. The governing equations,
are solved in a domain which is finite in the streamwise di-
rectionx, doubly infinite in the cross–stream directiony and
homogeneous in the spanwise directionz. In thex direction
a high-order compact finite differencing scheme is used.
In they andz directions a mapped spectral method and a
Fourier spectral method are used respectively. All quanti-
ties are nondimensionalized using the inlet wake halfwidth
b1=2 and the freestream velocityU0. The Reynolds num-
ber based on these scales isRe = U0b1=2=�. Appropriate
manipulation of the Navier–Stokes equations generate the
following equations.
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@t
= r�H+

1

Re
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!; (1)

@r2
U

@t
= r� (r�H) +

1

Re
r4
U: (2)

The instantaneous velocity is decomposed into the base
flow, the entrainment velocity and the computational vari-
ables as indicated by Eqs. (3)–(5).

U(x; y; z; t) = u(x; y; z; t) + U0(y) + xUe(y) (3)
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V (x; y; z; t) = v(x; y; z; t) + Ve(y) (4)

W (x; y; z; t) = w(x; y; z; t) (5)

Ue andVe are the entrainment velocity components and
are smooth and continuous functions ofy. In all simulations
Ve(y) = �5� 10�4 tanh(y). Ue(y) andVe(y) are related
such that they satisfy the mass conservation for the entrain-
ment velocity components. Using the streamwise compo-
nents of Eqs. (1) and (2) and the decomposition shown by
Eq. (3) yields:
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Equations. (6), (7) and the convective outflow boundary
condition are used for the time–advancement of the simu-
lation. With the help of the continuity equation and the def-
inition of !1, the spanwise velocity is obtained by solving

r2
?
w =
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�

@
2
u

@x@z
: (8)

The cross–stream velocity componentv is recovered direct-
ly from the continuity equation

@v
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= �
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@x
�
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@z
: (9)

Figure 1 shows the coordinate system and the computation-
al domain in which the governing equations for the incom-
pressible plane wake flow are solved. The inlet wake pro-
file is specified by a base flowU0(y) and the superimposed
computational velocity. The wake flow is allowed to de-
velop in x. A uniformly distributed entrainment velocity
is specified forv at�1. Boundary conditions foru and

Ve
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Ve

U0(y)

Lz=2 π/β
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z

y=+infinity

y=−infinity

Figure 1:Coordinate system and computational domain.

@u=@x are specified at the inlet (x = 0) and the outlet
boundaries (x = Lx). The boundary conditions are set
to zero in the cross–stream direction. Since the wake flow

is assumed to be homogeneous in thez direction, periodic
boundary conditions are used in the domain0 � z � Lz. In
the numerical simulations the computational variables at the
inlet boundary are specified using a combination of veloc-
ity eigenmodes, which are calculated using linear stability
analysis, resulting in

u = R eal [A2DF û2DF (y) exp (�i!f t)
+A2DSû2DS(y) exp(�i!f t=2)

+A2DSSû2DSS(y) exp(�i!f t=4)
+A3Dû3D(y)

(exp(
�z � i!f t

2
) + exp(

��z � i!f t

2
))]:

Note that the subscriptsF , S andSS denote quantities re-
lated to fundamental, subharmonic and second subharmon-
ics. Two–dimensional fundamental disturbances are applied
in all of the wake simulations. Three–dimensional distur-
bances, resulting in a pair of oblique waves, are superim-
posed on the two–dimensional disturbances. This pair has
equal and opposite spanwise wavenumbers, chosen such
that the angle of the pair of obliquewaves is60Æ. This
is approximately the same as the experimental results of
(Meiburg & Lasheras(1987)) which suggest the value of
2=3 for the ratio of spanwise wavelength to streamwise
wavelength. Boundary conditions for Eq. (7) are specified
using the definition of!1.
Convective boundary conditions of the form :

@u

@t
= �c

@u

@x
(10)

are specified at the outflow boundary for all three velocity
components. A value of0:9 was used forc. The bound-
ary conditions must be non–reflective to minimize feedback
problems.

An unforced, two–dimensional, wake flow simulation
with an inlet mean flow equal to the base profile (Gaus-
sian velocity distribution) provided the initial conditions for
the forced wake simulations. A uniformly distributed Gaus-
sian mean velocity profile at allx stations is the initial con-
dition for the unforced two–dimensional wake simulation.
All required computations are conducted in physical space
in x and in spectral space iny andz. The nonlinear terms
are formed by performing the cross product of the velocity
and vorticity components in physical space. The products
are then transformed back to spectral space where all other
computations, including the calculation of the viscous terms
in Eqs. (6) and (7), are performed. Exact integration to re-
coverv from the continuity equation introduces constraints
which must be satisfied for the entire computational domain
at any instant in time. A Galerkin projection was used to
satisfy these conditions.

RESULTS AND DISCUSSION

Time averaged statistics of a scalarf , denoted byf were
performed by averagingf over a time interval. For the
cases simulated here, the time interval is determined us-
ing the minimum forcing frequency at the inlet of the wake
profile (T = 2�=(!f )min). This is considered to be the
appropriate time interval for gathering the statistics when
each of the time periods suggested by the different forcing
frequencies is an integer factor of the smallest time peri-
od (T = 2�=(!f )max). Otherwise, mean statistics of the
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samples (f ) are obtained by using a long time period for col-
lecting the samples. This approach was tested by compar-
ing first and second order velocity correlations using long
time averaging and one time period averaging, resulting in
identical results (?). Statistics1 relating to the velocity com-
ponents of three–dimensional simulations are also averaged
over the homogeneous direction (z), this ensemble average
operator being denoted by “<>”. Successive application of
the ensemble and time average operators form the ensemble
mean operator which is defined by:

< f >=

R Lz

0

R t0+T

t0
f(z; t)dzdt

T:Lz

Prior to any sampling of data for statistical analysis, it
is ensured that the initial conditions for either unforced or
forced simulation have been washed out of the computa-
tional domain.

The first order spanwise vorticity and the first and second
order velocity correlations, which are ensemble averaged,
are scaled using the local halfwidth and the velocity deficit
at different streamwise locations. These quantities are in-
vestigated to ascertain self–similarity. Figure 2 shows the
streamwise velocity profiles in self–similar coordinates for
Cases 1 to 4.

This data shows self–similarity in the core region of the
plane wake and in the vicinity of the freestream. The ve-
locity profiles in the other regions of the plane wake show
a small deviation in self–similarity coordinates. The devia-
tions are less noticeable as the wake develops in the stream-
wise direction. The velocity profiles at the last two stream-
wise locations are almost identical. In other words, self–
similarity of the mean streamwise velocity is approached as
the wake develops downstream. Around the streamwise lo-
cation ofx = 50, self–similarity can be detected for the
mean streamwise velocity profiles.

The mean spanwise vorticity was also examined for
evidence of self–similarity. The vorticity distribution of
the wake flow in self–similar coordinates where the vor-
ticity and the cross–stream distance are normalized by
�Uc=b1=2(x) and b1=2 respectively are shown in Fig. 3.
The data indicates that the spanwise vorticity profiles for
the near field region of the wake flow in the vicinity of the
wake center and in the freestream regions are self–similar.
Like the streamwise velocity profiles, the self–similarity of
the vorticity profiles becomes more evident as the wake de-
velops downstream.
The start of self–similarity in the velocity and vorticity pro-
files can be related to the location where the ensemble av-
erage of the centerline velocity and the wake halfwidth are
constant. For the wake flows concerned, this was detected at
approximatelyx = 50, which is consistent with the results
shown earlier.

The second order velocity correlations (turbulence inten-
sities) are presented in Figs. 4 through 6. The data in these
figures show only little self–similarity at any stages of the
wake development. Only at the last two streamwise loca-
tions do the profiles approach the same general shape. The
distribution of the profiles also indicate the collapse of the
profiles in that regions. Other velocity correlations (first or
second order) which are not presented here do not exhibit
self–similarity.

1No statistical information was gathered in the vicinity of the
outflow boundary conditions.

CONCLUSION

Numerical simulations of a spatially–developing three–
dimensional plane wake flow has been performed. Differ-
ent upstream environments have been used to investigate
the self–similarity characteristics of this flow. The first or-
der statistics for the streamwise velocity and spanwise vor-
ticity components show that the profiles are self–similar in
the center region and in the freestream regions of the wake
flows. In general the collapse of these profiles is reasonably
good for the entire domain. The square root of the second
order velocity correlation are found to be symmetric about
y = 0. These profiles were not self–similar in the early
stages of the wake development but the distributions show a
similar shape and self–similarity becomes more evident as
the wake develops further downstream. The ensemble aver-
age of the streamwise velocity and spanwise vorticity pro-
files are approximately self–similar in the far downstream
region of the wake. The profiles in the near wake region
show self–similarity in the vicinity of the wake centerline
and near the freestream boundaries.
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Figure 2: Profiles of (1� < u >)=(1� < Uc >), at dif-
ferent downstream distances in self–similar coordinates: (a)
Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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Figure 3: Profiles of < !3 >< b1=2 > =(1� < Uc >) at
different downstream distances in self–similar coordinates:
(a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4.
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Figure 4: Normalized turbulence intensity profiles,
p

�u02

,at different downstream distances in self–similar coordi-
nates: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4
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Figure 5: Normalized turbulence intensity profiles,
p

�v02

,at different downstream distances in self–similar coordi-
nates: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4
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Figure 6: Normalized turbulence intensity profiles,
p

�w02

,at different downstream distances in self–similar coordi-
nates: (a) Case 1, (b) Case 2, (c) Case 3, (d) Case 4
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