
Second International Conference on CFD in the Minerals and Process Industries
CSIRO, Melbourne, Australia
6-8 December 1999

497

THE FLOW IN CONICAL CYCLONES

J.Q. ZHAO and J. ABRAHAMSON

Department of Chemical and Process Engineering, Canterbury University, New Zealand

ABSTRACT

A CFD simulation of the fluid behaviour within a
cyclone was carried out with FLUENT, using a
nonsymmetric algebraic stress model. Some fluid
features such as vortex-finder short cut flow and fall-
off of axial and radial velocities with axial distance
are noted. An analytical model was then developed
for the separation region of the cyclone which could
take the entry velocities as input. An exact solution
of the equation of motion for steady axisymmetric
inviscid flow in the conical region of a cyclone is
given. The solution can represent the effects of
potential flow, and non-uniform circulation, non-
uniform total pressure received from the inlet region,
on separation region streamline patterns.

Both a slot entry and an axial entry cyclone are
examined.  The velocity profiles predicted by
FLUENT are compared with those of the analytical
solution and with experimental measurements, for a
number of axial locations. Reasonable agreement is
found.

Using the analytical solution, the general effect of
upstream vorticity from non-uniform circulation is
discussed.

NOMENCLATURE

0a        polynomial coefficients of ‘circulation term’

Ai        series expansion coefficient of 
*
3Ψ

0b        polynomial coefficients of ‘total pressure’

Bi       series expansion coefficient of 
*
3Ψ

ic        arbitrary constant

H         dimensionless  total pressure
P          dimensionless static pressure

R          dimensionless conical radius, no. of  wr

wr       wall radius (from axis) at inlet boundary

Rc
      dimensionless cylindrical radius

vi         ith eigenvalue

uvmax        maximum velocity at inlet boundary

V       dimensionless fluid velocity, no. of  uvmax

Vr       dimensionless fluid radial velocity

(cylindrical radius)

Vx      dimensionless fluid axial velocity

Vxu  dimensionless fluid axial velocity at upstream

boundary

Vϕ   dimensionless tangential fluid velocity (in

longitude direction ϕ)

V uϕ   dimensionless fluid tangential velocity at

upstream       boundary

Zi ( )θ ith eigenfunction

Greek letters

α       half angle of conical wall
Γ          dimensionless circulation

θ       colatitude

Ψ       dimensionless streamfunction, 2
max/ wu rvψ

Ψ1
*

    a part of the solution of this problem

Ψ2
*

    a part of the solution of this problem

Ψ3
*

    a part of the solution of this problem

INTRODUCTION

Cyclones can be used to separate almost any phase
from another phase, and sometimes to classify
particulates. Design normally involves estimation of
the flow-field from inlet and other boundary
conditions, with these conditions accepted as for a
standard geometry, or systematically altered to
attempt to find an improved performance. The
difficulty here is the large number of possibilities
with at least eight dimensions to consider, and a
lack of confidence that the patchwork of
assumptions will accurately predict trends.

CFD has been used with improving confidence
(Pericleous, 1987; Davidson, 1988a; Hargreaves and
Silvester, 1990; Hsieh and Rajamani, 1991;
Dyakowski and Williams, 1993), but the time for
optimization can become uneconomic. Analytical
studies are still needed, which provide overall
solutions quickly, with easier generation of design
concepts (Bloor and Ingham, 1987; Davidson,
1988b).  A combination of an analytical  approach,
alongside CFD studies, may be of more benefit.

In this paper we simulate the fluid behaviour within
a return-flow cyclone with FLUENT.   Then we
give the overall features of the flowfields defined by
the same inlet conditions, from analytical solutions
of the simplified motion equations.
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 ANALYSIS

We use spherical polar co-ordinates (r, θ, ϕ) with

corresponding velocity components ( , , )v v vr θ ϕ .

The origin is at the apex of the cone, the axis is along
θ=0 and the surface of the cone boundary is on θ=α.
If we introduce the streamfunction ψ, the motion for
steady axisymmetric inviscid flow of an
incompressible fluid can be described by the
vorticity equation (Batchelor 1967, Bloor and
Ingham 1987),
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2
2 2 2( )  is ( ρ −1  times)  the total

pressure. Both γ and h are functions of ψ alone.

We now introduce non-dimensional variables and
also write the two terms on the right hand side of
equation (1) in polynomial form. Since the
dimensionless  streamfunction can be defined so
that it is always less than 1, higher order terms of
this streamfunction may be ignored.  A
dimensionless form of equation (1) retaining only
the first order terms, is
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Equation (2) can be used to describe many flow
cases.  Case I below can be used for a slot entry
cyclone, and case II for axial entry.

Case I: Bloor and Ingham (1987) gave this example.
Though they describe the flow field in spherical
polar co-ordinates, they determine the upstream
relationships in a cylindrical section. It was assumed
that the flow is axially symmetric, and enters this
region of the cyclone with a ‘top hat’ profile in the
tangential velocity component V uϕ , and uniform

(inward to the region) axial velocity Vxu
. The radial

velocity was chosen to ensure that it is zero at the
cylindrical wall and that H is a constant. These
upstream conditions are

Ψ
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= −
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2 0
2
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2V R
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u

( )
ϕ

,

H V V V Pxu u ru= + + + =
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2
2 2 2( )ϕ

constant

where 
ruV  is the cylindrical radial velocity.

Equation (1) can then be simplified to
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Case II:  This case is concerned with the constant

0b . The entering (dimensionless) circulation ΓΓΓΓ  is

constant  at a value Γu ,  the radial velocity at the

upper boundary Vr = 0 , and the axial velocity

there has a radial distribution V c R cxu c= +1
2

2 ,

( 1c , 2c   are arbitrary constants).

Since ΓΓΓΓ is constant, the first part on the right of
equation (1) is zero. Having assumed at entry the

cylindrical radial velocity Vr = 0 , the radial

equation of motion reduces here (for a steady flow)
to
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The streamfunction at the upstream boundary can be
calculated from

Ψ = = +∫ ∫R V dR R c R c dRc xu c c c c( )1
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( 4c  is an arbitrary  constant)                 [4]

Combining (3) and (4), the relationship between
streamfunction and the total pressure at the upstream
boundary becomes

Ψ = +H

c2 1

constant

Since the relationship will stay valid over the whole

flowfield, 
12c

d

dH =
Ψ

 over the flow field, and the

equation (1) can be rewritten as
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This is another special case to be described by
equation (2), with 00 =a , b c0 12= .

A ‘flexible solution’ for equation (2) in a conical
domain involving both a0 and b0 is:
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The detail of eigenfunctions )(θiZ can be found in

the appendix.
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SIMULATIONS

The simulations were carried out with FLUENT
3.03, using 3-dimensional nonsymmetric flow, and
an algebraic stress model in polar coordinates. The
conical wall was approximated by wall steps.  The
cyclone configuration for example I (Stairmand
High Efficiency 1951) is presented in Fig. 1, and
features a conventional cylinder-on-cone design
with a single tangential inlet and an axial outlet. For
example II, an axial (vane-like) inlet was taken.

Figure1:  Cyclone geometry (with De=1, D=2,
H=8, h=3, a=1, b=0.40, S=1, B=0.75)

Example I Slot entry: Boundary conditions used
were a flat tangential velocity profile across the inlet
(22 m/s) and a fixed static pressure across the outlet
section level with the roof.

 a. Tangential                                  b. Axial

Figure 2:  CFD (ASM) and measured velocity
profiles for example I

Figs. 2a and Fig. 2b show the predicted tangential
and axial velocity profiles respectively on the left
sides. It is noted that there is a short cut flow under
the vortex-finder, which passes through the upper
portion of the cyclone and then flows into the vortex
finder. We will discuss the short cut flow later. A
central isolated core can also be noted, which is a
region along the axis where the axial gas flow is in
the reverse direction to the outflow. This  air core is
obvious when it occurs in hydrocyclones, but
detailed measurements close to the core (Smith,
1962; Wakelin, 1993) show that a similar isolated
region may also appear in gas cyclones.

Figure 3a:  Tangential velocity at middle position
for example I (CFD is ASM model)
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Figure 3b:  Axial velocities at middle position for
example I (CFD is ASM model)

Comparison with measured results (Boysan et al.,
1983) is shown on the right sides in Figs. 2a and 2b
with reasonable agreement at three heights. In Figs.
3a and 3b, the comparison at the middle position is
shown in more detail, and a comparison with
analytical solution is added.

Example II Axial entry

Boundary conditions were (1) a constant angular
momentum for all entering fluid; (2) the radial
velocity at the roof Vr = 0 , and (3) the axial

velocity there has a radial distribution

V c R cxu c= +1
2

2
,  ( 1c , 2c  are arbitrary constants).

Figure 4:  CFD (ASM) axial velocity profiles for
example II

Fig.4 shows the CFD axial velocity profiles at
different heights for this example. Comparing Figs. 4
and 2b, we find that the axial velocity in the conical
portion of example II decreases faster towards the
bin than in example I.

DISCUSSION

Since we used an early version of FLUENT to
simulate the examples, the accuracy was restricted
by some limitations. The number of cells was
limited to 6001, with 20 steps around the perimeter,
and 25 steps axially. Axial steps in the conical wall
produced some artificial recirculation at the wall.
Both ε−k  and ASM turbulence models were used.
The normal ε−k  model hugely accentuated the
core region compared with experiments, with the
ASM model performing better in this respect.
Experiments (Smith, 1962) show that the inflow
boundary distribution of velocities and Reynolds
stresses influence the velocity field. The ε−k
model showed more sensitivity to these upstream
boundary conditions than did  ASM.

When we simulated the flowfield of example I with
CFD, we used boundary conditions very similar to
those assumed for case I for the analytical solution,

for which the solution is *
1Ψ + *

3Ψ . The

comparisons in Fig.3 match over most of the
separation working volume. Both analytical and
CFD menthods can describe features of the
flowfields, such as short cut flow, the fall-off of
axial velocities along the axis, and a central isolated
region (this can be modelled using the analytical
method, but has not been shown here).

Figure 5:   Comparison of the anlytical axial
velocities with experimental findings of Kelsall’s

hydrocyclone (α = 10 degrees) (<0.7%
underflow, with air core)

Fig. 5 shows the comparison of the axial velocity of
the analytical results of equation (2) with the
corresponding experimental findings of Kelsall
(1952.  It can be seen that good agreement is
obtained.  Many experiments show that the
flowfield just below the vortex finder may change
acutely, and recirculating or shortcut flow may
occur in this region. Our analytical solutions can
quite accurately represent the flowfield in this
region. The difference between our full solution and
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*
1Ψ for Kelsall’s hydrocyclone comes mainly from

the term *
3Ψ  of equation (5). *

3Ψ  is the solution

where a0 and b0 are both zero, ie. for potential flow.

Any form of the distribution of axial velocity at the
upper boundary can be matched using *

3Ψ . However

this term has its effect only on the upper and bottom
portions of the cyclone, whereas in the main portion,
the flowfield will revert automatically to that when
this term is omitted. Smith (Smith 1962) has
observed such similarity among flow patterns in a
cylindrical cyclone, away from the entrance for
varying inlet geometries and flows.  The “adjusting
fluid” corresponding to *

3Ψ  will pass through the

upper portion of the cyclone and then flow into the
vortex finder. This describes a shortcut flow. The
shortcut flow is one of the factors decreasing the
separating efficiency, since particles travelling with
the fluid have had little time to separate.

Away from the upper boundary, the streamline
pattern from equation (5) is given by the terms *

1Ψ
and *

2Ψ .     

            
     a, First Term *

1Ψ          b, Second Term Ψ2
*

Figure 6 Axial Velocity Analytical

The first term *
1Ψ  of equation (5) represents the

streamfunction caused by uneven distribution of
circulation across the streamlines. The second term

Ψ2
*  of equation (5) represents the streamfunction

caused by uneven distribution of total pressure
across the streamlines. Both these distributions
introduce vorticity into the flowfield and make the
fluid element rotate, so it can flow deeper into the
cyclone. Fig. 6 a, b shows the axial velocity of  *

1Ψ
and Ψ2

*   flow respectively. It can be seen that Ψ2
*

flows out in shorter paths, because it declines in R4

order along the spherical radius R towards the vertex,

while  *
1Ψ  declines in R2  order. The corresponding

radial velocities (Fig. 7) reflect this axial
dependence.  They show for *

1Ψ , constant values for

a given angle θ from the axis, whereas for *
2Ψ ,

values reduce in R2  order.  This is an important
difference for particle collection.

        

a, First Term *
1Ψ          b, Second Term Ψ2

*

Figure 7:  Radial Velocity Analytical

For many conventional slot entry cyclones, the
boundary conditions for example I should be
suitable, and the flow patterns will be similar to
those of example I.  We are unsure whether all axial
entry cyclones are represented by example II.

In the design of cyclones, the ‘natural length’ of  the
vortex in cyclones is an important concept. It can be
argued that  ‘natural length’ is related to the
penetration of the above flows and thus to upstream
boundary conditions.  From the argument above, a
tentative conclusion is that the natural length of a
given cyclone body will be less with an axial entry
than with a slot entry.

CONCLUSIONS

1. A CFD simulation of a conical cyclone with
FLUENT 3.03 was carried out. The results are
rough but suitable for comparison.

2. An exact solution of the equation of motion for
steady axisymmetric inviscid flow in the
conical region of a cyclone is found. The
solution can be used to describe the flowfield
of  practical cyclones.

3. The upstream boundary conditions at the
entrance have a key effect on the flow pattern
of cyclones.

4. The effect can be described by the upstream
vorticity distributions, which are formed from
the inlet structure and boundary layer.
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APPENDIX: Details of functions )(θiZ
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These functions can be readily calculated using a
number of commercial packages, eg. Matlab.
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