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ABSTRACT

One- and two-dimensional numerical models of forced
convective boiling of molasses in a calandria tube are
described. The flow in the tube is considered to be composed
of two phases (molasses and steam). The one-dimensional
model solves a simplified set of ODEs describing the non-
equilibrium boiling process. The two-dimensional model is
based on the Eulerian/Eulerian multi-phase approach as
implemented in the CFX-4.2 CFD code, and solves for the
distribution of volume fraction and the temperature and
velocity of each phase, along with global parameters such as
pressure drop and evaporation rate.

Solutions are presented for a case with similar conditions to
those expected in a batch vacuum pan. The results show that
the flow in the tube is complex and multi-dimensional.
Vapour forms both at the wall (due to direct heating) as well
as in the centre (due to bulk boiling). The observed features
of the flow from the numerical simulation are qualitatively
similar to available experimental observations made by
previous investigators, although quantitative agreement has
yet to be achieved.

NOMENCLATURE

Cp heat capacity
k thermal conductivity
T temperature
hfg heat of vapourisation
Tsat liquid saturation temperature
r volume fraction
H enthalpy
p pressure
S energy source term
d bubble diameter
CD drag coefficient
B
!

buoyancy force vector
u
!

velocity vector!"
F body force vector
m# specific mass transfer rate from liquid to vapour

αβm# coefficient of mass exchange from phase α to β

cαβ
(d ) coefficient of momentum exchange from phase α to β

cαβ
(h) coefficient of energy exchange from phase α to β

hαβ heat transfer coefficient between phase α and β
Aαβ interfacial area between phase α and β
ρ density

β thermal expansion coefficient
µ dynamic viscosity

Subscripts

l liquid (molasses)
v vapour (steam)
α phase α
β phase β

INTRODUCTION

Vessels used in the processing of raw sugar, such as batch
vacuum pans, continuous pans and evaporators, incorporate
calandria tube heat exchangers. The tubes are heated
externally by condensing steam and the liquid inside the
tubes boils. The vapour formed inside the calandria tubes
during the boiling process causes a net pressure difference
between the tube inlet and outlet and drives a natural
circulation up through the tubes and down a central
downtake, as shown in Fig. 1. Although the multiphase flow
in the calandria tubes largely controls both the circulation
and the heat transfer within these vessels, there is little
known about its exact nature for viscous fluids, such as
syrup, molasses and massecuite (a mixture of molasses and
crystals).
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Figure 1: Cross section through a typical vacuum pan

Due to the high viscosity of these fluids, convective boiling
in calandria tubes generally takes place in the laminar flow
regime. Rouillard (1985a) performed a comprehensive
experimental study of forced convective boiling of syrup,
molasses and massecuite and developed correlations for the
pressure drop and heat transfer coefficients in the calandria
tubes. However, simple pan circulation models based on
these correlations show considerable scatter when compared
with measured evaporation rates (Rouillard, 1985b),
suggesting that improvements in both the modelling and
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correlations are possible. Also, the use of the condensate
flow rate to determine the overall heat transfer to the
massecuite in the experiments is open to question, since it
does not account for heat losses. Other experimental
investigations in the area of sugar boiling have been
performed by Austmeyer and Schliephake (1983) and
Austmeyer (1986) who studied low viscosity sugar solutions.
They observed that, for their highest viscosity solution, a
vapour blanket formed on the pipe wall in the upper portion
of the tube (inverted annular flow) which hindered heat
transfer. They also found significant radial and axial
variation in temperature, velocity and supersaturation within
the tube.

Models of circulation in vacuum pans (e.g., Rouillard, 1987)
require a knowledge of the vapour formation and pressure
drop in calandria tubes. Even some recent papers, such as
Sheng (1993), have improperly assumed that single-phase
pressure drop relationships are applicable within calandria
tubes. Such assumptions can lead to gross errors in
prediction of circulation in pans.

Some limited computational fluid dynamics (CFD)
modelling of simplified vacuum pans has been performed
(Bunton, 1981; Brown et al., 1992). Neither of these studies
properly modelled the flow within the calandria tubes. For
example, Bunton (1981) considered the pressure drop in the
calandria tubes to be given by single-phase laminar flow,
which is clearly inappropriate. Brown et al. (1992) only
simulated the forced circulation of massecuite in single-
phase flow under isothermal conditions which is not
representative of natural circulation in pans.

In this paper one and two-dimensional models of the two-
phase flow in a single calandria tube are presented and
discussed. The simulation results show the processes which
occur in calandria tubes under similar conditions to those
found in a vacuum pan. Once validated, these model can also
be used to generate improved correlations for pressure drop,
evaporation rates and heat transfer in calandria tubes. The
modelling techniques developed here will find future
application in predicting circulation in vessels with calandria
tube heat exchangers, such as vacuum pans.

MATHEMATICAL MODEL DESCRIPTION

Eulerian two-phase flow model

The axisymmetric model geometry consists of a single
calandria tube of length 1 m and internal diameter 100 mm,
as shown in Fig. 2. These dimensions are representative of
calandria tubes used in batch vacuum pans.

The two-phase model is based on an Eulerian approach in
which each phase is assumed to interpenetrate with the other
and occupy a certain volume fraction of each computational
cell. For the present model the phases are molasses and
vapour, and the flow is assumed to be at steady state. The
governing equations are conservation of mass, momentum
and energy for each phase and are presented in chapter 12 of
the CFX-4.2 solver manual (CFX International 1997).

Additional equations are required to describe the transfer of
mass, momentum and energy between phases and at the wall.
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Figure 2: Geometry of tube model
For two phases the sum of the volume fractions at a point
must equal unity, viz:
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where the pressure is common to both phases. The
conservation of energy equation for phase α is
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The interfacial momentum exchange coefficient is given by
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where the the drag coefficient is determined by Stokes law
(Stokes, 1901). The interfacial heat exchange coefficient is
expressed as

αβαβαβ Ahc h =)(   (6)

where the heat transfer coefficient is computed using the
correlation of Ranz and Marshall (1952a, b). Interfacial mass
transfer is proportional to the heat transfer between the two
phases.
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Information required at the wall includes the nucleation site
density, frequency of bubble detachment from the wall,
bubble size at detachment, and the superheat required for
activation of nucleation sites. All of these parameters involve
uncertainty for molasses, and at present have been assigned
values based on the available literature and “educated
guesses”. The sensitivity of the model to these values will be
assessed in the future. Various modifications were required
to the source code of the boiling model currently
implemented in CFX-4.2. These modifications include
changes to the wall heat partitioning model and allowing the
saturation temperature to vary with height due to the change
in hydrostatic pressure.

The equations are solved using the finite volume method and
the IPSAC procedure. A false transient method was used to
obtain the steady-state solution. Under-relaxation factors of
0.4 , 0.65 and 1.0 were used for the volume fraction,
momentum and energy equations, respectively. The mass
transfer was also under-relaxed using a factor of 0.01.
Further details of the governing equations and solution
methods are given by CFX International (1997).

The boundary conditions for the simulation are a prescribed
uniform wall heat flux (1 kW/m2), a mass flow rate (0.717
kg/s) with a parabolic velocity profile at the inlet, a uniform
molasses temperature (347.15 K) at the inlet, no-slip
conditions on the tube wall, and fully developed flow at the
outlet. Additionally, the variation in saturation temperature
along the axis of the tube had to be specified. The saturation
temperature was calculated from the absolute pressure that
the fluid would experience within Rouillard’s (1985a)
experimental apparatus, i.e. calculated from the height of
molasses above the tube top and the pressure above the free
surface. For this simulation the value used for the height of
molasses is 0.3 m and the pressure above the free surface is
24.5 kPa (absolute). This gives a range for the saturation
temperature between 353.5 and 346.5 K.

Properties of the molasses correspond to that used in
Roulliard’s (1985a) experimental run 7 and are ρl = 1457
kg/m3, ρv = 1 kg/m3, kl = 0.4 W/m.K, kv = 21.7×10-3 W/m.K,
Cpl = 1775 J/kg.K, µl =0.745 Pa.s, µv = 489×10-6 Pa.s and hfg

= 2358 kJ/kg. Buoyancy effects due to heating are also
included using the Boussinesq approximation with a
coefficient of thermal expansion β = 3.0017×10-3 K-1. The
molasses is assumed to be Newtonian with a viscosity
independent of temperature, which is not the case in reality.
However, a more realistic viscosity model will be introduced
at a later stage. A uniform bubble diameter of 1 mm was
assumed in the heat and momentum transfer correlations.

For the results presented here the computational mesh
consists of 350 volumes in the axial direction and 25
volumes in the radial direction. The mesh is biased in the
radial direction closer to the wall to resolve the narrow
boundary layers, whilst the spacing in the axial direction is
biased towards the tube outlet since this is where the
majority of the phase change occurs. With any simulation it

is important to assess the effect of mesh refinement (Freitas,
1993). A grid-independence check was performed using 400
x 40 volumes in the axial direction and radial directions,
respectively. The total energy at the outlet of the tube
changed by less than 0.1% so that the solution on the
original mesh is considered essentially grid-independent.

The simulation was carried out on James Cook University’s
SGI Power Challenge supercomputer using one R10000
CPU. The total time for the simulation with the 350 x 25
mesh was 22 CPU hours.

One-dimensional, two-phase flow model

Although it yields detailed results, the two-dimensional
model takes a considerable time to run. Thus, it is not well
suited to parametric studies of the flow behaviour as a
function of applied heat flux and mass flow rate. In this
section a simplified one-dimensional, two-phase flow model
is presented that sacrifices solution detail in favour of short
run times.

Assume one-dimensional flow occurs so that all quantities
have uniform profiles at any streamwise position along the
tube. Under this assumption the continuity equations
simplify to
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where is m#  the mass transfer per unit volume from the
liquid to the vapour. The one-dimensional momentum
equations are
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In the above momentum equations the axial shear stress has
been omitted as it is small compared with the other terms.
Neglecting axial conduction, which is a valid assumption for
the high Peclet number flow considered here, the one-
dimensional energy equations are
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Following Stephens and Harris (1988), equations (7), (8) and
(9) may be rearranged to yield a set of ordinary differential
equations in the six unknowns ρl, ul, uv, p, Hv and Hl. Given
the thermofluid properties of each phase, a saturation
temperature profile and appropriate inlet conditions, these
equations may be integrated along the tube to yield axial
profiles of the unknown variables. Here, the integration was
carried out using the MatlabTM routine ode15s for stiff
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ODEs. The inlet conditions and thermofluid properties were
taken to be the same as the two-dimensional model, except
where noted below.

The one-dimensional model cannot account for frictional
pressure drop in the tube. However, this can be computed
separately by using correlations to determine the two-phase
flow friction factor.

RESULTS

Eulerian two-phase flow model

The Eulerian two-phase flow model outputs the distribution
of temperature, velocity, pressure and volume fraction for
each phase (molasses and vapour). From these detailed
results it is also possible to compute global quantities of
interest such as overall pressure drop, heat transfer and
evaporation rate.
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Figure 3: Two-dimensional model results. Flow is from
bottom to top, the tube wall is on the left and the tube axis is
on the right of each figure. (a) liquid temperature; (b) vapour
volume fraction; (c) liquid velocity; (d) pressure.

Results of the model are shown in Fig. 3 (a) to (d) for the
conditions given above. There are three classical zones
visible in these figures: single-phase heating, sub-cooled

boiling, and bulk boiling (Collier and Thome, 1996). The
relative size of these zones depends strongly on the mass
flow rate, wall heat flux and saturation temperature profile.

In the single-phase heating zone no boiling occurs. The flow
enters the tube, is heated at the wall and a very thin thermal
boundary layer develops next to the wall as shown Fig. 3 (a).
Note that the very thin thermal boundary layer is due to the
very high Prandtl number of the molasses. There is
essentially no vapour phase present at this point. As can be
seen in Fig. 3 (c) the velocity profile near the inlet follows
the expected parabolic shape for fully developed laminar
flow in a pipe. About one-fifth of the way along the tube
sub-cooled boiling commences. In this zone boiling occurs
immediately adjacent to the wall where the liquid
temperature has reached saturation temperature. The thermal
boundary layer at the wall thins and vapour is formed very
near the wall. The vapour formation at the wall accelerates
the flow near the wall and, by conservation of mass, the
velocity in the centre of the tube slows, eventually to
virtually zero (i.e., the region inside the 0.033 m/s contour).

Approximately two-thirds of the way along the tube the
prescribed saturation temperature, which is dependent on the
vertical elevation, falls to equal the temperature of the
molasses in the centre part of the tube. At this point bulk
boiling occurs and a great deal of vapour is formed as shown
in Fig. 3 (b). The bulk vapour formation accelerates the flow
in the centre part of the tube as shown in Fig. 3 (c). This
acceleration causes the majority of the pressure drop as
shown in Fig. 3 (d). Even when there is a high volume
fraction of vapour, the vapour and molasses still move at
virtually the same speed due to the high viscosity of the
molasses which results in a very large drag between the two
phases.

These results are consistent with the observation by
Austmeyer and Schliephake (1983) of a vapour blanket at
the wall in the upper part of the tube. The presence of this
vapour layer is detrimental to heat transfer from the wall to
the fluid. However, it does speed the flow adjacent to the
wall, which reduces the velocity in the centre part of the
tube, allowing time for vapour to form. This is an important
two-dimensional effect. Indeed, the one-dimensional boiling
model described above shows that there is insufficient time
for bulk vapour formation if the velocity is not slowed in this
manner (refer to following section).

In this simulation the applied wall heat flux (1 kW/m2) was
much lower than the reported measured heat flux of
Rouillard (1985a) of 18 kW/m2. At this stage in the research
it is still not possible to simulate wall heat fluxes that are
representative of conditions in a vacuum pan, but this
limitation is currently being addressed.

For this simulation the overall pressure drop is about 1.5 kPa
which is significantly larger than that for single-phase flow
of molasses at the same mass flow rate (240 Pa). The
difference is due to the acceleration caused by vapour
formation. The average volume fraction of vapour leaving
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the tube is about 0.64 which yields an overall evaporation
rate of 3.9 kg/h. This value is comparable to, but somewhat
less than, the evaporation rate found in a batch vacuum pan
(approximately 10 kg/h per tube). The predicted rate is lower
than that generally observed due to the low applied wall heat
flux mentioned above.

One-dimensional two-phase flow model

Results from the one-dimensional model are presented in
Fig. 4, along with some experimental data and radially
averaged two-dimensional model results for comparison.
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Figure 4: One-dimensional model results. Short and long
dashes correspond to inlet velocities of 0.063 m/s and 0.01
m/s, respectively. Solid line is radial average of the two-
dimensional results shown in Fig. 3. Data points are from
Rouillard (1985a) experimental run 7: in (a) the
measurements are at the tube axis, whereas in (b) the
measurements are volume averages across the tube.

There are two curves shown for the one-dimensional model.
The first is for a bulk inlet velocity of 0.063 m/s, which
corresponds to the mass flux used in the two-dimensional
model and the experimental run, and the second is for an
artificially reduced velocity of 0.01 m/s.

It is important to realise that the models have different wall
heat fluxes: the one-dimensional model has zero heat flux
(although this could easily be added); the two-dimensional
model has a wall heat flux of 1 kW/m2; and the reported heat
flux for the experimental run is 18 kW/m2. As presented, the
one-dimensional model only models the vapour formation
due to flashing, when the bulk temperature exceeds the
saturation temperature.

The inlet temperatures for the one-dimensional model are set
higher than the experimental run since the single phase
heating zone is not modelled (if it were the bulk temperature
would increase linearly from the inlet). The axial
temperature profiles from the one-dimensional model clearly
demonstrate non-equilibrium effects. That is, the liquid
becomes superheated for a portion of the tube (x > 0.6 m)
before flashing to vapour. In the higher velocity case the
superheated region extends to the end of the tube, whereas in
the lower velocity case the flow has time to attain thermal
equilibrium before the end of the tube. Consequently, the
lower inlet velocity case exhibits significantly more vapour
formation due to flashing than the higher inlet velocity case.

The radially-averaged axial temperature profile from the
two-dimensional model does exhibit some bulk heating due
to the imposed heat flux. However, once sub-cooled boiling
occurs the bulk temperature decreases since the saturation
temperature decreases. Since the tube outlet temperature is
less than the inlet temperature this flow would not sustain
natural circulation.

DISCUSSION

In order for a mathematical model of the tube boiling to be
successful it must properly describe both the subcooled and
bulk boiling zones. These zones are highly two-dimensional
so it seems reasonable to expect that a two-dimensional
model will be superior to a one-dimensional model.

The two-dimensional model does predict sub-cooled boiling.
However, at this stage it does not produce results that are
representative of available experimental data. The data of
both Rouillard (1985a) and Austmeyer (1986) show a
noticeable increase in the temperature at the axis of the tube
in the sub-cooled flow region (e.g., see Fig. 4 (a)). This
could only occur if there is some heat transfer mechanism
(e.g., bulk mixing caused by bubble blockage effects, or
“heat pipes” formed by bubbles protruding from the hot wall
into the cooler fluid) that allows heat to be transferred to the
tube axis. At present such mechanisms are not included in
the Eulerian two-fluid two-phase flow model, since the
bubbles are not explicitly represented, with the result that all
the heating and vapour formation are confined to an
extremely narrow wall region. Attempts to increase the wall
heat flux to realistic values causes the code to fail as the
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volume fraction at the wall approaches unity and there is no
mechanism for the energy to get away from the wall. In
contrast, the one-dimensional model would be able to
represent the bulk fluid heating in the sub-cooled zone as the
heat flux would be implemented as a volumetric source term
in the liquid energy equation. Of course, the one-
dimensional model would predict no vapour formation in the
sub-cooled region which is not realistic.

In the bulk boiling region the two-dimensional model
performs well. Notably, it predicts the slowing of the flow
near the axis which is essential to allow sufficient time for
bulk boiling to occur. As the one-dimensional model is
incapable of representing this two-dimensional effect it fails
to properly model the bulk boiling region. Only when the
inlet velocity is artifically reduced by a factor of  more than 6
does the one-dimensional model begin to capture the bulk
boiling zone.

The non-equilibrium one-dimensional model could not be
used for prediction of vapour formation without modification
as it fails to predict the bulk boiling zone. It may be the case
that a simpler model assuming thermodynamic equilibrium
would better capture the bulk boiling region, although it is
likely to overpredict the amount of vapour generated.

The two-dimensional model holds the most promise for
predicting this flow, but does require modification in the
sub-cooled region since it currently does not allow sufficient
heat to be transferred from the wall region to the centre of
the tube.

CONCLUSION

Numerical models of the convective boiling of molasses in a
calandria tube under laminar flow conditions have been
presented. For conditions similar to those in a batch vacuum
pan the two-dimension model results exhibit regions of sub-
cooled boiling and bulk boiling. There are significant radial
variations of temperature, velocity and volume fraction and a
noticeable vapour blanket formed at the wall near the tube
outlet. The vapour and liquid phases both travel at virtually
the same velocity due to large drag of the high viscosity
molasses. The one-dimensional model is simple and runs
quickly, but fails to adequately predict the bulk vapour
formation without using an artificially low inlet velocity.
Compared with the experimental data, but both models
underestimate the amount of vapour formed in the lower part
of the tube.

It should be noted that the results are only given for one set
of parameters and vary greatly with applied heat flux, mass
flow rate, inlet conditions and saturation temperature.
Additionally, the two-dimensional model results could
change significantly once a more realistic viscosity model
(i.e., temperature dependent and pseudoplastic) and a higher
wall heat flux are introduced.
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