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ABSTRACT

The flow in a Supersonic Injection Feeder [1,2] involves
relatively thick boundary layers in a narrow channel.
When the pressures at the extremities of such a duct are
adjusted to produce a compression shock, the shock
structure is radically different from a plane discontinuity.
This difference arises solely due to shock wave-boundary
layer interaction [3], and gives rise to the so-called
“pseudo-shock”. In this paper, results of CFD simulations
of a pseudo-shock in clean gas (air) are compared with
predictions of the “Diffusion” model [11], the “Modified-
Fanno” model [1,15] and with experimental results [1, 7].
An analysis of the effect of small particles on pseudo-
shock structure is offered in the form of extensions of the
analytical models and CFD simulations.

INTRODUCTION

Supersonic Injection Feeder

A Supersonic Injection Feeder [1,2] is a pneumatic device
designed to convey dry particulate matter to high-pressure
destinations. A zone of relatively low pressure is created in
a supersonic gas stream, and particulate matter in the form
of a gas-particle suspension is introduced into it. The
particles in the combined stream are then conveyed to the
high-pressure destination via a compression shock. A
schematic diagram is shown in Figure 1.  Ideally, the
shock is a plane discontinuity with an abrupt change in
flow parameters across it.
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Such a “pseudo-shock”  (Figure 2) also occurs in
supersonic diffusers [3], in the inlets of air-breathing
engines and SCRAMjet engines, in supersonic
compressors and high-pressure power plants [4] and even
gas-dynamic lasers [5]. The shocks are accompanied by
the corresponding fluctuations in flow parameters such as
pressure, temperature and Mach number. The fluctuations
continue until the core flow has been decelerated to sonic
conditions. Thereafter the flow parameters change
monotonically. The fluctuations are damped out at
distances closer to the solid duct walls. Wall pressure
measurements therefore exhibit a gradual rise instead of an
abrupt one. The pseudo-shock can be divided into two
parts: an upstream “shock” region and a downstream
“mixing” region (Figure 3) [4]. Each of these regions can
be further divided into two parts: core flow and boundary
layer flow [11].

Figure 2  Single and Pseudo-Shocks

Figure 3    Pseudo-Shock Regions
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“MODIFIED-FANNO” MODEL

Shock Region Flow and Fanno Flow

The overall characteristics of the flow in the shock region
of the pseudo-shock in a duct are:

(1) Constant mass flux;
(2) Rigid and adiabatic duct walls;
(3) Flow tends towards the sonic condition.

It is observed that these characteristics are exactly the
same as those of the well-known “Fanno” flow. In a Fanno
flow, wall friction is solely responsible for changes in flow
parameters in the downstream direction. The above
observation, however, prompts the question: “Would it be
possible to describe the flow in the shock region as a
“modified” Fanno flow?” In this version, not only wall
friction, but also progressively weaker shocks in the core
would bring about changes in flow parameters. With this
modification, it is possible to represent the successive
states attained by the fluid in the shock region by points on
the Fanno line, as shown in Figure 4 [1, 15].
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approximation for the flow between, for example, states
‘1’ and ‘3’:

onlyShockstwithassociatedRiseEntropy

ssss

1

21322131

=
∆≈∆+∆=∆ −−−−

       (1)

Then, the distance between sections ‘1’ and ‘3’ (between
the first and second shock) can be estimated using the
relation between entropy change ds and friction factor f:
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The distances between each pair of successive shocks can
be calculated in the same way, provided an estimate is
available for the core friction factor fav,core [1, 15]. Such an
estimate can be obtained from a Second-Law analysis of
the shock region. This analysis also represents anLimiting
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Second-Law Analysis

Following the nomenclature in [16], the law of entropy
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production [15] can be written for the shock region as:
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Since only changes in entropy are significant, sstart may be
assumed to be zero. Hence,
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(The steady flow assumption can be relaxed to include
unsteady oscillations of the pseudo-shock [e.g. 17]
without destroying the basic argument in this model.)

In terms of the ratio of mass flow rates [11]
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the entropy generated is given by:
( ) layerboundarycoregen sss ,22,221 µµ +−=                           (10)

In terms of frictional dissipation factors fcore and
fboundary layer,

( ) ( )

( )
∫

∫

−+

−−=

3

1

2

3

1

2

2

1

2

1
1

H

p

H

p
end

D

dx
M

c
f

D

dx
M

c
fs

layerboundarylayerboundaryend

corecoregen

γµ

γµ

      (11)



This yields the (average) core friction factor:
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Finally, an estimate of sgen can be obtained from the well
known “Integrated Friction Factor” value: for a supersonic
flow at an initial Mach number M to be driven to the sonic
condition by frictional dissipative effects in a constant
mass flux flow (i.e., a Fanno flow)[18]:
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where L* is the duct length required, and D its diameter.
fint is the “integrated friction factor”, which can be looked
upon as a weighted average of fcore and fboundary layer. From
this calculated value of core friction factor and upstream
conditions, it is possible to compare analytical predictions
with experimental results.

MODEL VALIDATION

Axisymmetric Flow

Figures 5 and 6 show a comparison between experimental
results [7] and predictions using the modified-Fanno
model.
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without the injection tube makes it possible to test the flow
for evidence of pseudo-shocks in clean air. Wall pressure
measurements allow comparison of between experiment
and the prediction of the “Diffusion” model [11]. Figure 7
shows a typical set of wall pressure measurements.

Figure 7   Air-Only Flow in Supersonic Injection Feeder

For a stagnation chamber pressure of 34 kPa (gauge), the
minimum duct pressure attained is –42 kPa (gauge),
corresponding to a Mach number of approximately 1.314.
Subsequent pressure recovery to ambient conditions at the
downstream end is seen to be gradual, not abrupt, thus
indicating the presence of a pseudo-shock.  Figure 8 shows
a comparison between experiment and prediction by the
Diffusion model. It is seen that at least for this moderately
supersonic upstream Mach number, the Diffusion model
predicts the pressure rise in the upstream part of the
compression region with reasonable accuracy.Expt [7] : radius 25.95 mm, p0 = 0.3325 atm
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Figure 5  Core Mach Number Comparison

Figure 6  Core Pressure Comparison
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Figure 8   Wall Pressure Comparison

Comparison with Modified-Fanno Model

The shadowgraph technique [2] enables visualisation of
the air-only flow in the core of the supersonic injection
feeder duct. Figure 9 presents visual evidence of the
existence of a series of shocks in the core.

Figure 9    Shadowgraph of Pseudo-Shock
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comprising the pseudo-shock train, due to oscillations of
the pseudo-shock about a mean position [17]. Existence of
at least three or four shocks is evident from the bright lines
in the shadowgraph. Inter-shock distances decrease in the
downstream direction. The shocks are also progressively
shorter, indicating gradual reduction in core area
downstream of the initial shock. Figure 10 shows a
comparison between core Mach number as predicted by
the Modified-Fanno model, along with approximate
locations of the shocks as revealed by the shadowgraph.

Figure 10   Core Mach Number (1)

Figure 11 shows a comparison between Mach number
variation as predicted by the Diffusion model and the
Modified-Fanno model.

Figure 11  Core Mach Number (2)

The Diffusion model does not predict any shocks in the
core of the flow, only an overall decrease in core Mach
number. It is interesting to note that the Diffusion model
predicts a total pseudo-shock length of about 4.6 duct
diameters, out of which the upstream shock region
occupies about 2.4 diameters. At this point, the Diffusion
model predicts a core Mach number of almost exactly 1.
This appears to confirm the reported finding [4] that the
pseudo-shock can be divided into two distinct regions, the
upstream shock region and the downstream mixing region.
It is also interesting that the Modified-Fanno model, which
is based on a one-dimensional analysis, can predict shocks
in the core with reasonable accuracy even for a planar
flow. The fourth or fifth shock predicted by the Modified-
Fanno model is probably the “limiting” shock. Figure 12
shows a comparison between pressure variations as
predicted by the Diffusion model, the Modified-Fanno
model, and wall pressure measurements.

Figure 12  Pressure in Shock Region

PSEUDO-SHOCK IN DILUTE SUSPENSIONS

The simplest way to extend the above models to pseudo-
shock in a gas-particle suspension is to assume that the
suspension is dilute, with the solid particles occupying
only a small fraction of the total volume. Under this
assumption, the suspension behaves like a quasi-ideal gas
whose properties can be expressed as functions of the
solids volume fraction [e.g. 1, 19]. It is observed that the
presence of solid particles greatly reduces the speed of
sound in a gas-particle suspension, compared to that in
clean gas. This implies that compressibility effects are
heightened in suspensions, since even for relatively low
velocities, the Mach number may not necessarily be small.
This observation may have important implications for the
investigation of pneumatic conveying of suspensions [19].

Extension of Diffusion Model

The length “l” of a pseudo-shock normalised with respect
to duct (hydraulic) diameter “DH” is [11]:
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where “c” is an experimentally determined constant, ω1

the non-dimensional velocity (Crocco number) just
upstream of the pseudo-shock, and ω * is a function of the
isentropic exponent γ:
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Since the constant-volume specific heat cp, gas constant R
and isentropic exponent γ can all be expressed as functions
of particle loading, the parameters ω1 and ω* are also
functions of particle loading, and so is the overall structure
of a pseudo-shock in a suspension. It can be shown [1]
that for the same upstream Mach number, a pseudo-shock
in a suspension is longer than that in clean gas.
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Extension of Modified-Fanno Model

Figure 13 shows a simple method of extending the
modified-Fanno model to dilute gas-particle suspensions.

Figure 13  Simple Extension o
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Figure 20    Core Mach Number
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