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ABSTRACT

In this work the mixed finite element approximation to
the incompressible Navier-Stokes equations is discussed.
The approach is based on a segregated finite element
scheme and unstructured grids. Stable and second order
accurate tetrahedral elements were used for spatial
discretization of computational domain. The algorithm is
applied to study the flow in hydrocyclones in three
dimensions.

INTRODUCTION

Over the past few years there has been significant
advancement in the techniques to simulate
incompressible flow. However, numerical simulation of
the flow in hydrocyclones is still not used for designing
purposes. One of the reasons behind this is a lack of
capability of existing methods to accept complex
geometries in an integrated manner. The philosophy
underpinning this work was to avoid the introduction of
any numerical technique, which would restrict geometric
flexibility. A finite volume method is not well suited to
handle unstructured meshes, which are needed for
modelling inlet geometry of hydrocyclones. It should be
emphasized that the majority of existing numerical
algorithms is mainly restricted to an axi-symmetrical
case and, for such a case a finite volume technique was
applied, Dyakowski and Williams [1]. When the finite
element method is used, the formulation of the equations
imposes no restriction in the mesh topology. Flows in
complex geometries can be simulated using an irregular
mesh where required.

The paper describes the development of the segregated
mixed finite element scheme. In segregated velocity-
pressure formulations of the Navier-Stokes equations,
velocities and corresponding pressure field are uncoupled
and computed in an iterative sequence. In contrast, in
couple formulations the governing variables are
simultaneously treated. The advantages of the
uncoupled/iterative methods are twofold: (i) reduced
computational cost (memory and CPU) and (ii) a
significantly larger radius of convergence, Gresho [2].
The disadvantage is a significant increase in the number
of iterations to achieve convergence.

In this investigation, to ensure that the Brezzi-Babuska
div-stability condition is satisfied, Taylor-Hood
interpolation at element level is used, Zienkiewicz [3].

GOVERNING EQUATIONS

As a formulation for incompressible flow problems the
Navier-Stokes equations are considered in three
dimensions

0gradgrad =∆−+⋅ uuu vp
in Ω (1)

together with the incompressibility constraint

0 div =u in Ω
(2)

where u = (u, v, w) denotes the velocity field, p the
pressure and v is the given constant kinematic viscosity.
The constant density has been absorbed into the pressure.
The inclusion of body force term f on the right hand side
would not change anything in the subsequent analysis.
The statement of the problem is made complete by the
specification of the suitable boundary condition. It is
enough, if the velocity vector is given on all boundaries,
provided that the boundary condition satisfies the
incompressibility constraint that the same amount of

fluid enters and leaves the domain Ω .
That is

 on         Ω∂= gu
(3)

The boundary velocity b must satisfy the global condition
(2)

∫ ∫
Ω Ω∂

=⋅=Ω 0div dsd ngu

(4)

where n is the outward unit normal vector to the

boundary Ω∂ .
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The system of equation (1)-(2) with the boundary
conditions (3) and (4) results in a solution determined up
to an additive constant in pressure.

MIXED FINITE ELEMENT APPROXIMATION

Weak Form

The mixed finite element method has been applied to the
governing equations. Galerkin type weak formulation of
(1) and (2) has the form

Ω=Ω⋅∫
Ω

in           01dfϕ

(5)

Ω=Ω∫
Ω

in             02dfµ

(6)

where ( )µϕ , are weight functions, which are equated to

the interpolation functions used for ( )u,p  For

convenience the left sides of equation (1) and (2) are

replaced by 1f  and 2f  respectively.

Finite Element Model

In order to prevent an over-constrained system of discrete
equations the interpolation used for pressure must be at
least one order lower than that used for velocity field
Sani [4,5]. The Taylor-Hood P2P1 type of tetrahedral
elements are used in this approach to ensure second order
accuracy and to satisfy the crucial div-stability condition,
Gunzburger [6], Gresho [7]. The choice of these elements
means that velocity (each component) is approximated
by piecewise continuous quadrilateral polynomial and
pressure by piecewise continuous linear polynomial.
Both velocity and pressure are continuous across element
boundaries and each tetrahedral element contains ten
velocity nodes and four pressure nodes. Dependent
variables, pressure and velocity, can be written by
expansion

∑
=

==
4

1j

Te
j

e
j

e pp pµµµµµ

  (7a)

i
T

j

e
j

e
j

e
i uu uΦΦΦΦ== ∑

=

10

1

ϕ

(7b)

where µµµµ and ΦΦΦΦ are vectors of interpolation (shape)
functions, and ui and p are vectors of nodal values of
velocity components and pressure, respectively.
Substitution of equations (7a) and (7b) into momentum
(1) and continuity (2) equations results in the finite
element equations. The derived equations can be written
symbolically in matrix form as.
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where K sub-matrices represent the combined effects of
convection and diffusion; C matrices are the pressure
gradient operators and their transposes; CT matrices
appearing in the continuity equation are the velocity
divergence operators. The vector bc on the right hand
side of the continuity equation represents the contribution
to this equation from the non-zero Dirichlet velocity
boundary conditions. The vector F contains surface-flux
type contributions from the natural boundary conditions
as well as a body force.

Equation Solver

As an equation solver the segregated type of iterative
algorithm has been employed. The applied pressure
projection algorithm was proposed by Horoutunian et al.,
[8]. It is a consistent finite element counterpart of the
SIMPLER algorithm first introduced by Patankar [9].
The primary variables were de-coupled directly from
momentum and continuity equations (10) at the
discretized level. The algorithm comprises the following
main steps:

(0) given an initial or guess solution field (u, v, w,
p) for i = 0,1,2... until convergence the following
steps should be taken

(1) solve for pressure p
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(2) relax pressure via

( ) 211 1 ++ −+= i
p
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(3) solve x-momentum equation for u
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(4) solve y-momentum equation for v
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(5) solve z-momentum equation for w
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(6) solve SCPE for pseudo-pressure ps
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(7) mass adjust velocity field via
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Where: 
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In the above equations the superscripts i, i+1/2 and i+1
denote previous, intermediate, and latest iterate levels,
respectively, while the superscript * denotes an
expression involving the latest available field variables.

The K
~

 matrices are incomplete versions of the full K
matrices. It is necessary to stress that equations have
been derived at the discretized level from manipulations
on the dicretized form of the momentum (5) and
continuity equation (6). As a consequence the boundary
conditions on pressure implicitly implied in equation (1)
through the boundary conditions on velocity, are
automatically and consistently imposed in pressure
equation - step (1). The equations are characterised by
generic system Ax = b and are solved sequentially and
repeatedly during the course of iteration. At the
beginning of a given iteration, an approximation to the
pressure is obtained from the solution of a simplified
pressure equation using the latest available field
variables. The components of the momentum equations
are then solved in sequential manner using the most
recent field data. Finally, at the end of the whole
sequence, the velocity field is corrected to satisfy the
discretized continuity equation.

PRELIMINARY RESULTS
The driving force of the presented paper is the need for
modelling the complex inlet geometry. Figure 1 shows
the grid being developed for simulation of the head entry
region with inclined walls. The grid consists of
tetrahedral elements enabling the matching of the
computational domain to the physical boundaries.

A comparison between the proposed unstructured grid
against the multi-block curvilinear grid (He et al [10]) is
presented in Figure 2. It should be emphasized, that
Slack and Boysan [11] also applied the concept of the
unstructured grid in their latest version of Fluent
software.

A global refinement and adjustment of the proposed grid
can be obtained as follows. Firstly, global grid
parameters and the number of subdivisions can be
changed (Figure 3). Secondly, each tetrahedron can be
subdivided into twelve smaller tetrahedrons by giving the
centroid of the large tetrahedron to the vertices and
centroids of the faces. The drawback of the proposed
method is that the matrices of the algebraic equations do
not have a convenient structure.

CONCLUSIONS

A numerical algorithm to study incompressible fluid flow
has been introduced. This algorithm will be implemented
to study the flow in hydrocyclones. Three-dimensional
unstructured grids based on tetrahedral elements have
been developed. The accurate representation of a
computational domain allows researching into how
changes in the shape of hydrocyclone will influence its
operating performance. The more advanced computations
may exceed the current workstation capabilities. It has
always been the problem of the FEM that larger
computational times have been associated with it. This is
especially the case in the area of incompressible and
turbulent fluid flow. However, the ability of modern
supercomputers allows the approximation of three
dimensional flow in hydrocyclones to be attempted.
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Figure 1. Mesh in the profiled head entry region of hydrocyclone
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Figure 2: (a) The unstructured grid consisting Figure 2: (b) Three segment mesh at the z – r plane
of tetrahedral elements within hydrocyclone (He et al., 1999)

Vortex Finder
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Figure 3:  Hydrocyclone configuration – the shown parameters can be modified
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