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ABSTRACT

The process of non-isothermal extrusion of Newtonian
fluids through circular and annular dies is considered.
Specifically, the contribution to extrudate swell from the
velocity distribution at die exit is examined, using a finite
element method. It is found that when different temperatures
are imposed on the die walls, this velocity distribution can
account for a significant, but still minor in general, portion
of the total thickness swell and deflection (in annular
extrusion) of the extrudate. When die walls have the same
temperatures, however, the contribution from velocity is
much further reduced and becomes insignificant in most
cases. This leaves viscosity variation due to temperature
change confirmed as the dominant factor in affecting the
extrudate’s swelling behaviour.

INTRODUCTION

This work is concerned with a numerical study of the
contribution to extrudate swell from the velocity factor in
non-isothermal extrusion. The other factor, due to viscosity
change as a result of temperature variation, can then be
estimated by deduction.

Extrusion is an important manufacturing process, and
extruded products abound. Extrusion through annular dies
in particular has application in the manufacturing of pipes
and is closely related to processes like film blowing and
wire coating. In studying the extrusion  process, the material
to be extruded is often modelled as a viscous fluid.
However, it is known that when such a fluid is extruded
through a die, in general the extrudate does not have the
same size as the die orifice. The amount of change in
extrudate size, known as swelling, is of significant
theoretical and practical interest, given the nature of the flow
phenomenon involved and the accurate dimensions required
of many of  the extruded products. It is therefore not
surprising that extrudate swell has been among the
parameters of primary interest in many investigations; see,
for example, Phuoc and Tanner (1980), Vlachopoulos
(1981), Mitsoulis (1986), Seo (1990), Ahn and Ryan (1992),
Huynh (1998a), and the references therein.

Temperature has been seen to be among the many factors
affecting extrudate swell (Phuoc and Tanner, 1980;
Vlachopoulos, 1981; Seo, 1990; Ahn and Ryan, 1992;
Huynh, 1998a). In particular, it has been shown recently
(Huynh,1998a, 1998b) that large variations of swelling of
the extrudate can result when the extrusion flow is non-
isothermal, especially when die walls are prescribed with
temperatures that are significantly different from the fluid’s
bulk temperature. However, since temperature affects the
fluid’s properties, and most importantly its viscosity, and

this in turn affects the flow field, it is not clear as to the
contribution to swelling from each factor, viscosity change
and velocity distribution, because both have been known to
influence the swelling phenomenon: the viscosity influence
as per a theory due to Tanner (Tanner, 1980; Huynh, 1983),
whereas extrudate swell also occurs in isothermal situation
and thus is due to the re-arrangement of the velocity field
(Karagiannis et al., 1989).

In an effort to provide further understanding of the extrudate
swell phenomenon, a main aim of this work is to investigate
the contribution to extrudate swell from these two aspects,
namely as a result of velocity distribution and, by deduction,
from viscosity variation.

MATHEMATICAL MODEL AND NUMERICAL
METHOD

As mentioned above, a main aim of the current work is to
estimate the contribution to extrudate swell from the
velocity factor. And as will be discussed below, the
contribution from the other factor, namely viscosity
variation as a result of temperature change can then be
deduced. Therefore, two problems need to be considered
and their results compared.

In Problem One, a full extrusion situation is considered.
Although results as regards extrudate swell of this problem
have been reported elsewhere (Huynh, 1998b), because it
forms the basis for comparison with Problem Two described
below, this problem is described again. The die geometry
considered in Problem One is in the form of a straight,
circular tube on the outside, and a concentric cylindrical
mandrel with a conical head facing the flow on the inside,
thus forming a uniform annular gap between them before the
die exit. The arrangement is shown diagrammatically in
Fig. 1. The chosen geometry is believed to be representative
enough of an extrusion process through annular dies; see,
for example, Powell (1974), Morton-Jones (1989), Benbow
and Bridgwater (1993) for some similar geometries.

Figure 1. Model of the flow domain and die geometry for
Problem One.
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The mathematical model used is that for a steady, axi-
symmetric, non-isothermal flow of incompressible,
Newtonian fluids with free surfaces and without body
forces. The governing equations are those of conservation of
mass and momentum, and balance of energy. For ease of
reference, a non-dimensionalisation scheme is also used and
the non-dimensional parameters and variables are defined
such that the form of the governing equations is unchanged
(Huynh, 1998a). In the usual notation, these equations in
cylindrical coordinates are (Bird et al., 1964)
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where r, z are respectively the (non-dimensional) radial and
axial co-ordinates, u and w the velocity components in the
radial and axial direction respectively, p pressure, T
temperature, and ρ, µ, c and k respectively the fluid density,
viscosity, specific heat capacity and thermal conductivity.

Note that for a Newtonian fluid and in Cartesian component
form,  the  stress  tij  is  related  to  pressure  and strain rates
by

ti j p i j
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where vi is the velocity in the xi direction, and δ i j  the

Kronecker delta.

The coupling between the flow and temperature fields is via
the fluid’s temperature-dependent viscosity. Here µ is

assumed to decrease exponentially with temperature
according to the formula

    µ = µo  e − αT

where α is a non-dimensional exponential coefficient and µo

a constant, here set equal to 1. Other fluid properties are
assumed to be constant, and the following non-dimensional
values are used: density ρ = 1.67 × 10 − 7 ; thermal
conductivity  k = 0.190 ; specific heat capacity c = 7.19 ×
10 7. It was shown (Huynh, 1998a) that when appropriate
values are taken for the physical parameters like
temperatures, mean flow velocity, tube radius, etc., then the
above non-dimensional properties correspond approximately
to those of  low-density polyethylene under zero shear at
about 150°C - 190°C temperature range.

Referring to Fig. 1, the following non-dimensional boundary
conditions are used:

(a) At entrance to the flow domain (z = − 5): parabolic
velocity profile and uniform, zero temperature,

      ( )u w r T= = − =0 2 1
2

0, ,

(b) The tube wall and mandrel wall, here together called
the die walls, are divided into two sections.

   (i) Section 1, between entrance to the flow domain (z =
− 5) and a location z = zT  < 0 in the annulus region
upstream of the die exit: non-slip condition and zero
temperature,

      u w T= = =0 0,

   (ii) Section 2, between the location z = zT and die exit
(z = 0), shown as in Fig. 1: non-slip condition and
some imposed wall temperatures,

      u = w = 0
     T = Tin on the inner (mandrel) wall, T = Tout  on the

outer (tube) wall
(c) Along the centre-line (r = 0, z ≤ − 2): zero radial

velocity and shear stress, and axis-of-symmetry condition
for temperature,

     u trz T r= = =0 0 0, , /∂ ∂
(d) At the "far-downstream" section or exit of the flow

domain (z = zmax where zmax is sufficiently large so that there
is no further change to the extrudate dimensions; here values
of zmax = 4, 4.4 and 6 have been used): zero radial velocity
and axial stress,

     u = 0 ,  tzz = 0

No thermal boundary condition is imposed on this end, thus
the solution attempts to make ∂ T/∂ z = 0 here. This is
acceptable, as discussed in Phuoc and Tanner's (1980).

(e) On the free surfaces (z > 0) : zero stresses
      tnn tns= = 0

where n is the (non-dimensional) outward-pointing co-
ordinate normal to the surfaces, and  s is the co-ordinate
along them. Also a convective cooling condition is imposed.
Here, following Phuoc and Tanner (1980), this is

     
∂

∂

T

n
T= − −0 72 28 8. .

In Problem Two, the flow domain consists simply of the
extrudate of Problem One, i.e. the part with z ≥ 0. The
viscosity’s exponential coefficient α is set to zero, and thus
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in effect making the problem isothermal as regards the flow
field. The boundary conditions are as follows:

At inlet to the considered flow domain, i.e. along the section
z = 0 which corresponds to the die exit in Problem One, the
velocity results of Problem One are prescribed. Because α =
0, temperature has no effects on the flow field, and any
arbitrary set of temperature values can be used for thermal
boundary conditions; here mostly T = 0 has been used.

On the rest of the boundary, i.e. on the free surfaces and at
the “far-downstream” section (exit of the considered flow
domain) the same boundary condition as for Problem One
are prescribed; i.e. boundary conditions (d) and (e) above.

A finite element scheme based on the Galerkin discretisation
procedure is used, solving numerically the governing
equations simultaneously in their full, non-linear forms,
together with boundary conditions, for the primary variables
which consist of the two velocity components, pressure and
temperature. A simple iterative scheme of successive
substitution type (Picard method) is used for the solution of
the resultant set of non-linear algebraic equations. The
correct working of the resultant computer program used has
been amply demonstrated before (Tanner et al., 1975; Phuoc
and Tanner, 1980; Huynh, 1998a).

For Problem One, grid patterns of 11 quadrilateral elements
in the radial direction by 81 elements in the axial direction
(12×82 grid points) and 13 by 98 elements (14×99 grid
points) are used. The adequacy of these patterns is
ascertained by observing that solutions obtained from the
12×82 grid are very similar to those from the 14×99 grid for
the many test cases where both grids are used. The grid
patterns for Problem Two are simply those corresponding to
the extrudate part of Problem One. Thus patterns of 12×48,
12×51 and 14×59 grid points have been used. Also, for all
cases presented here, numerical convergence has been
ensured to be excellent. (Figs 9 and 10 below show
examples of the grid patterns that have resulted after
convergence has occurred. The patterns are for the
corresponding cases from the two problems).

In addition to the “grid convergence” tests mentioned above,
another set of tests have also been performed to ensure the
validity of the solutions obtained. In these tests, a modified,
non-isothermal Problem Two is solved, whereby α is now
non-zero and being the same as that of the corresponding
cases of Problem One. At inlet to the flow domain, boundary
conditions now include the temperature results at die exit
from the corresponding cases of Problem One. Solutions
from the two problems as regards extrudate parameters are
then compared. The agreement has been satisfactory. For
example, the results shown in Table 1 have been obtained at
the “far-downstream” location (z = 6) for the case where α =
0.100, and annular radius ratio Rinner wall / Router wall of 0.7.

from
Problem
One

from modified,
non-isothermal
Problem Two

Inner Radius 1.5505 1.5595

Outer Radius 1.9721 1.9838

Axial Velocity 0.673 0.664

Temperature on
inner surface

− 10.62 − 10.71

Temperature on
outer surface

− 10.96 − 11.05

Table 1. An example of extrudate’s parameters obtained
from solving corresponding cases of Problem One and the
modified, non-isothermal Problem Two.

Computation is done on a Sun Enterprise 3000 machine,
running a UNIX operating system. Double precision (64
bits) is used throughout.

RESULTS AND DISCUSSION

Two annulus ratios Rinner wall / Router wall of 0.7 and 0.9, as well
as the degenerative situation of capillary extrusion when the
mandrel core is absent are considered under a combination
of different imposed wall temperatures. The combination
results in a total of 13 “case series” for Problem Two as
listed in Table 2. The solutions from these series will then
be compared with the corresponding situations from
Problem One, also listed in Table 2 and which have been
reported by Huynh (1998b). Thus, in total, results from 26
series will be presented.  Another parameter of interest
would be a changing value of zT (see Fig. 1) but presently
only a value of zT  = − 0.5 is used. The series are also
grouped into 3 groups according to the annular gap size.
Within each series of Problem One, the fluid viscosity’s
exponential coefficient α is varied, allowing the Nahme-
Griffith number Na to change as a primary changing
parameter. The Nahme-Griffith number based on conditions
at exit in Problem One is defined as

   Na = α W 2µ o / k

where W is the mean velocity in the axial direction. The
Péclet number at the exit, defined as

   Pe = ρ c W ( Ro − Ri ) / k

is, however, constant within each series; here R stands for
radius, and subscripts o and i indicate outer and inner radii
respectively. It should be pointed out that Pe represents the
ratio between convective and conductive heat transfers. On
the other hand, since α − 1 can be considered as a
characteristic temperature change, Na provides a measure of
the relative change in viscosity due to heat generation and
thus determines the amount of coupling between the flow
field and temperature field. For the cases of Problem One
considered here, Na is related to α  by the following
relations

   Na =  20.20 α   for group B (series B, Bm, Bn, etc.)
        =  145.6 α    - -- - - - - D ( - - -  D, Dm, Dn, etc.)
        =    5.26 α    - - - - - -  O ( - - - O, Om, On)

Below, occasionally, we identify an individual case of a
series by the series letter followed by the Na value. Also
note that the matching cases from the two Problems are
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distinguished by an extra 0 associated with Problem Two.
Thus, for example Bp2.02 indicates a case of series Bp from
Problem One with the Na = 2.02 (α = 0.100), while the
corresponding case from Problem Two (for which Na is
always zero) is designated as Bp02.02.

The local Reynolds number based on a local length scale L
and defined as  Re = ρ W L / µ usually attains its maximum
value near the die exit of Problem One as µ would be
smallest in that region due to prolonged viscous heating in
the annulus giving rise to a maximum temperature. In all
cases, however, Re is very small. Using the annular gap size

for L and the minimum value attained near the die exit for µ,
the maximum Re attained is about 1.3 × 10 − 4.

Extrudate Swells

To characterise swelling in extrusion through annular dies,
the following two swell ratios are used (subscripts extrudate
and exit indicate the conditions at the “far-downstream”
section of the extrudate and at the die exit, respectively):

Extrudate thickness swell ratio

st = [extrudate thickness − exit gap size] / exit gap size
   = [(Ro − Ri )extrudate − (Ro − Ri )exit ]/ (Ro − Ri  )exit

Mean radius swell ratio

sm = [( Rm  )extrudate − ( Rm  )exit ] / ( Rm  )exit

where Rm is the mean radius given by Rm = ( Ro + Ri ) / 2.
Thus sm provides a measure of the extrudate’s radial
deflection relative to the die exit location.

In the following, Na refers to Na of Problem
One, since for Problem Two Na is always zero.
Also, as regards extrudate swell, values
corresponding to Na = 0 will be used as
reference ones. Furthermore, it should be
mentioned that the extrudate’s swelling
behaviour resulting from Problem One has
been discussed previously elsewhere (Huynh,
1998b). Here, attention will be given to results
of Problem Two, but comparison will be made
between the two Problems. Thus, for example,
an sm value obtained from the case Bp02.02 of
Problem Two would indicate a contribution
from the velocity factor to the total value that
has been obtained from the corresponding case
Bp2.02 of Problem One.

Figs 2 and 3 show some representative velocity
profiles at die exit from Problem One that have
been used as velocity boundary conditions at
inlet (z = 0) to the flow domain in Problem
Two. The figures also show the corresponding
temperature profiles which have been used in
the second set of validation tests mentioned
above. Note that Fig. 2 shows a flattening of
the w profile and a shifting of the u profile’s
peak value towards the die walls as their equal
temperature increases. Fig. 3 on the other hand
shows a shifting of the w profile and  maximum
u values towards the hot wall side. These
behaviours are expected however, since a hot
wall would reduce viscosity locally, and
enhances the flow.

Variation of st with respect to Problem One’s
Na for the series of group O is shown in Fig. 4.
Note that for this group, st and sm are identical.
By comparing the results between series O and
O0, and between Om and Om0, it can be seen
that velocity distribution contributes to a very

small portion of extrudate swell when zero or negative
temperatures are imposed on the die wall.

Now one important implication of the results of the
second set of validation tests mentioned above is that, as
regards extrudate swell, it can be solely determined by the
distribution of velocity and temperature (hence viscosity) at
die exit. This then means that viscosity change due to
temperature is the principal cause of extrudate swell in
circular capillary extrusion when zero or negative
temperatures are imposed on the die wall. When the wall is
heated, however, a comparison of results from series On and
On0 shows that the velocity factor can constitute a

Group Annular

gap radii

Case

series

Tin / Tout

of Problem

One

Grid

pattern

used

(grid

points) -

Problem

One

Grid

pattern

used

(grid

points) -

Problem

Two

Péclet

number

Pe

B 0.7 - 1

(Gap size

0.3)

B

B0

Bm

Bm0

Bn

Bn0

Bo

Bo0

Bp

Bp0

0 / 0

− 16 / − 16

+ 16 / + 16

− 16 / + 16

+ 16 / − 16

14 × 99

14 × 99

12 × 82

12 × 82

14 × 99

14 × 59

14 × 59

12 × 48

12 × 48

14 × 59

37.1

D 0.9 - 1

(Gap size

0.1)

D

D0

Dm

Dm0

Dn

Dn0

Do

Do0

Dp

Dp0

0 / 0

− 16 / − 16

+ 16 / + 16

− 16 / + 16

+ 16 / − 16

14 × 99

14 × 99

12 × 82

14 × 99

14 × 99

14 × 59

14 × 59

12 × 48

14 × 59

14 × 59

33.2

O 0 - 1

(no

annulus:

capillary

extrusion

)

O

O0

Om

Om0

On

On0

− / 0

− / − 16

− / + 16

12 × 82

12 × 82

12 × 82

12 × 51

12 × 51

12 × 48

63.1

Table 2. Cases considered.
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substantial proportion of extrudate swell; here up to about
44% of the total.

Figs 5 and 6 show variation of st with respect to Problem
One’s Na for the series of groups B and D respectively. By
comparing results from series B and B0, Bm and Bm0, Bn
and Bn0, and similarly with the series of group D, it can be
seen that when both annulus walls have the same
temperature, velocity factor constitutes a very small portion
of the total thickness swell, with the exception of series Bn
and Bn0 whereby this portion can be up to about 27 %. Note
that with these two latter series a contraction in extrudate
thickness occurs, using the st value at zero Na as reference.
However, when temperatures of opposite signs are imposed
on the annulus walls, contribution from the velocity factor to
thickness swell becomes substantial. This can be seen in the
comparison between series Bo and Bo0, Bp and Bp0, Do and
Do0, and Dp and Dp0. Also, the proportion is higher in
group B, reaching, for example, to a maximum of about 27
% with series Bo and Bo0 at Na = 1.01.

One other interesting aspect is that with series Bp0 and Dp0
a suppression of thickness swell by the velocity distribution
has occurred, against the large, positive trend of series Dp,
and especially Bp at higher Na values. This thus indicates an
even stronger influence of viscosity on thickness swell in
these series.

Figs 7 and 8 show variation of sm from the two Problems in
terms of Na for groups B and D respectively. When both die
walls have the same temperatures (series B and B0, Dm and
Dm0, etc.), sm in all cases is very small and thus both
velocity and viscosity have very little influence on sm.

However, when different temperatures are imposed on the
die walls (series Bo and Bo0, Dp and Dp0, etc.), the velocity
factor in general contributes to a substantial portion of the
total sm. Furthermore, this portion is larger when the cold
wall is on the inside (series Bo and Bo0, Do and Do0). Also,
in terms of magnitude, sm from the series of group B is
larger (relative to the reference values at Na = 0) than that
from group D; as regards Problem One the reason for this
has been shown to be related to the higher Péclet number of
group B (Huynh, 1999). The proportion of contribution to
sm from the velocity factor is, however, mostly minor (less
than about 40 %), except for the corresponding series Bo
and Bo0 where the ratio of sm reaches about 57 %. The
reason for this high ratio is believed to be mainly due to the
levelling out of sm of the Bo series at high Na, which is in
turn due to the larger annular gap of group B; essentially,
the extrudate’s inner radius has a lower limit of zero, and
group B would reach its limit before that of group D.

Finally, Figs 9 and 10 show an example of extrudate shape
from corresponding cases of the two Problems, with the
resulting grid patterns of the flow domains after
convergence has occurred; the cases being Bo2.02 and
Bo02.02 respectively.

CONCLUSIONS

In an effort to provide further understanding of the
extrudate’s swelling behaviour in non-isothermal extrusion,
contribution to extrudate swell from the velocity factor has
been investigated numerically. Contribution from the other
factor due to variation in fluid viscosity as a result of

temperature change can then be estimated by deduction.
Annular and circular dies have been considered. It is found
that contribution from the velocity factor to thickness swell
and deflection of the extrudate depends significantly on
thermal conditions of the die walls. With circular dies, this
contribution is substantial only when the die walls are
heated. With annular dies, the contribution is seen to vary
with die gap size. However, when both walls are imposed
with the same temperatures, this contribution remains
mostly small, except for thickness swell in the case of larger
die gap whose walls are heated. When different temperatures
are imposed on the die walls such that one is heated while
the other is cooled, the velocity factor can then contribute a
substantial portion to the total swelling effect. In most cases,
however, this portion is still minor, leaving viscosity change
through temperature variation as the major cause of
extrudate swell.

REFERENCES

AHN, Y.-C. and RYAN, M. E., 1992, Analysis of
nonisothermal extrudate swell, Chem. Eng. Comm. 116,
201-225

BIRD, R. B., W. E. STEWART and E. N. LIGHTFOOT,
1960, Transport Phenomena, John Wiley

BENBOW, J. and J. BRIDGWATER, 1993, Paste Flow
and Extrusion, Oxford University Press

HUYNH, B. P., 1983, Some Finite Element Studies of
Extrusion, J. Non-Newtonian Fluid Mech. 13, 1-20

HUYNH, B. P., 1998a, A numerical investigation of non-
isothermal extrusion through annular dies, Int. J. Engng Sci.
36(2), 171-188

HUYNH, B. P., 1998b, A numerical investigation of non-
isothermal extrusion through annular dies - Influence of wall
temperatures on extrudate swell, Heat Transfer 1998, Proc.
11th Int. Heat Transfer Conf. 5,  27-32, August 23-28,
Kyongju, Korea

HUYNH, B. P., 1999, A numerical study of the influence
of wall temperatures in extrusion through annular dies,
submitted

KARAGIANNIS, A., A. N. HRYMAK and J.
VLACHOPOULOS, 1989, Three-dimensional non-
isothermal extrusion flows, Rheologica Acta 28, 121-133

MITSOULIS, E., 1986, Extrudate swell of Newtonian
fluids from annular dies, AIChE J. 32(3), 497-500

MORTON-JONES, D. H., 1989, Polymer Processing,
Chapman & Hall

PHUOC, H. B. and TANNER, R. I., 1980, Thermally-
induced extrudate swell, J. Fluid Mech. 98, 253-271

POWELL, P. C., 1974, Design of extruder dies using
thermoplastics melt properties data, Polym. Eng. Sci. 14,
298-307

SEO, Y., 1990, Nonisothermal annular die swelling
analysis, Polym. Eng. Sci. 30(4), 235-240

TANNER, R. I., R. E. NICKEL and R. W. BILGER,
1975, Finite element methods for the solution of some
incompressible non-Newtonian fluid mechanics problems
with free surfaces, Comput. Methods Appl. Mech. Eng. 6,
155-174

TANNER, R. I., 1980, A new inelastic theory of
extrudate swell, J. Non-Newtonian Fluid Mech. 6, 289-302

VLACHOPOULOS, J., 1981, Extrudate swell in
polymers, Rev. Deform. Beh. Materials 3, 219-248



434

Figure 2. An example of velocity profiles at die exit from
the solution of Problem One and used as boundary
conditions at inlet to the flow domain in Problem Two. Here
the die walls have the same temperature. The temperature
profiles are also shown.

Figure 4. Variation of st with respect to Problem One’s Na
for the series of group O.

Figure 3. Similar to Figure 2, but here the die walls are prescribed with
temperatures of the opposite signs.
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Figure 5. Variation of st with respect to Problem One’s Na
for the series of group B.

Figure 6. Variation of st with respect to Problem One’s Na
for the series of group D.

Figure 7. Variation of sm with respect to Problem One’s Na
for the series of group B.

Figure 8. Variation of sm with respect to Problem One’s Na
for the series of group D.
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Figure 9. An example case of Problem One showing
extrudate shape and the resulting flow domain’s grid pattern
after convergence has occurred. The case is Bo2.02 of series
Bo with Na = 2.02.

Figure 10. An example case of Problem Two, showing the
shape of the flow domain (extrudate only) and the resulting
grid pattern after convergence has occurred. The case is
Bo02.02 of series Bo0, corresponding to the case Bo2.02
shown in Figure 9.
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