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ABSTRACT 

In this paper the hydrodynamics and shell side mass 
transfer of laminar flow across in-line tube arrays is 
studied numerically. The hydrodynamics of a five-tube 
array were described by the two-dimensional Navier-
Stokes equations, employing the stream function-vorticity 
method. After a converged solution for the hydrodynamics 
had been found, a transport equation for the concentration 
was solved. The numerical grid of the investigated 
geometries consists of a number of basic cells, which are 
generated with a domain decomposition method combined 
with orthogonal grid generation. The hydrodynamics and 
mass transfer were analysed for Reynolds = 2-200, 
Péclet = 10-300 and pitch-to-diameter ratios of 1.5, 1.85 
and 2.0. It is shown that the strength of the recirculation 
occurring between the adjacent tubes increases with 
increasing Reynolds number, and with decreasing pitch-to-
diameter ratio.  

NOMENCLATURE 

x, y  Cartesian coordinates 
A tube radius 
C concentration 
c dimensionless concentration  
D diffusivity 
f distortion function 
hη, hξ scalar factor 
Pe Péclet number 
Re Reynolds number  
Sc Schmidt number 
Sh Sherwood number 
U∞ bulk velocity 

Greek symbols 

ψ stream function 
ω vorticity 
ξ, η computational coordinates 
λ pitch-to-diameter ratio 
ν kinematic viscosity 

Subscripts 

avg. Average 
b bulk  
in inlet 
loc local 
t tube 

 
 
 

INTRODUCTION 

Due to their excellent mass transfer properties hollow fiber 
membrane modules are extensively used in many 
applications such as absorption, extraction, osmosis and 
ultrafiltration. One of the most commonly used hollow 
fiber geometries is the shell and tube configuration with a 
bundle of hundreds of porous fibers, aligned axially but 
arranged orderly or randomly in the cross section (Wu and 
Chen, 2000). Many experimental studies have been 
published on mass transfer in hollow fiber modules. The 
mass transfer inside hollow fibers can be described 
analytically due to the relatively simple flow conditions: 
laminar flow with a parabolic velocity profile. On the 
other hand, empirical correlations are mostly used for the 
prediction of the mass transfer coefficient at the shell-side 
of hollow fiber membranes (Yang and Cussler, 1986, 
Wickramasinghe et al., 1993, Costello, et al., 1993). The 
experimental studies have led to practical correlations but 
not to detailed insight and understanding of the underlying 
phenomena. In this respect an approach based on 
computational fluid dynamics can serve as an important 
complementary tool to experimental approaches. 

Although relatively little numerical work has been done on 
mass transfer in these particular systems, there is a vast 
amount of numerical work in the area of heat transfer in 
shell and tube heat exchangers, which is analogous to 
mass transfer in tube bundles due to the Chilton-Colburne 
analogy. Numerical work on mass transfer in tube bundles 
and related work for heat transfer will now briefly be 
reviewed. 

Baier et al. (1999) investigated the mass transfer rates in 
spatially periodic flows through staggered arrays. In their 
method the velocity field was obtained numerically using 
the creeping flow assumption whereas the mass transfer 
coefficients were obtained using boundary layer theory. 
The drawback of their method is that the influence of the 
boundary layer thickness caused by the recirculation 
between the adjacent tubes inside the array, cannot be 
correctly taken into account. The calculation procedure is 
therefore limited to the range of creeping flow. Bao & 
Lipscomb (2002) analyzed the mass transfer in axial flows 
through randomly packed fiber bundles with uniform wall 
flux. The finite element method was used to solve 
governing momentum and conservation of mass equations 
in their prediction. One of the limitations of their method 
is that it cannot be applied to the cross flow fiber module 
that is more complex than the axial flow module. 

Several studies on the numerical simulation of 
hydrodynamics and heat transfer of flow through tube 
banks have been published year to year (Launder & 
Massey, 1978, Chen & Wung, 1989 and Wung & Chen, 
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1989). It was reported that heat transfer coefficients in the 
shell-side of cross flow units are higher than those in 
parallel units in all the test cases. Furthermore, Schöner et 
al. (1998) found that the transfer processes are 
additionally faster when the hollow fibers are evenly 
spaced in modules. 

The objective of the present investigation is limited to the 
simulation of mass transfer in in-line hollow fiber tube 
arrays subjected to cross flow. This paper is consists of 
three parts. The first part describes the mathematical 
model and its numerical procedure. In the second part 
numerical results are presented and analysed in detail. 
Finally the conclusions are presented. 
 

Figure 1: Typical structure of the cross-flow hollow-fiber 
contactor 

 

MODEL DESCRIPTION 

The structure of a typical cross-flow hollow fiber contactor 
is illustrated in Fig. 1. During the operation one fluid 
containing a dissolved component flows through the tube 
side (or shell side), while the other fluid flows across the 
shell-side (or tube-side) separately. Usually a distributor is 
installed near the inlet side to facilitate proper contacting 
with the tube array. Efficient exchange of the dissolved 
component between the two fluids (i.e. liquid/liquid or 
gas/liquid) can be achieved through the high specific area. 

For modeling of mass transfer in these cross flow modules 
not only the knowledge of the mass transfer inside the 
tubes but also the knowledge of the mass transfer at the 
shell side is necessary (Shröner et al., 1998). In this study 
we will focus on the mass transfer phenomena at the shell 
side using a two-dimensional model. The Navier-Stokes 
and species conservation equations are given below in 
curvilinear coordinates (Li, 1998): 
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where x = x(ξ, η), y = y(ξ, η). 
 
The influence of dissolved components on the flow 
behavior is negligible at low concentration and as a 
consequence Eq. (3) can be decoupled from Eqs. (1) and 
(2) when carrying out the mass transfer calculations. 
However Eqs. (1) and (2) must be simultaneously solved 
by iteration. Note that in the governing equations the time 
terms are retained in Eqs. (1) and (3) as a pseudo time for 
convenience of the solver. 

The dimensionless quantities are listed below; for notation 
convenience the superscripts are omitted in the transport 
equations. 

( ) ( )
,  ,   ,

,  ,  in s in

a U aU t tU a

a a c c c c c

ω ω ψ ψ
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The dimensionless Reynolds, Péclet and Schmidt numbers 
are defined as: 

2Re aU ν∞=  (5) 

Pe Re Sc= ⋅   

=Sc Dν  (6) 

For solution of the species conservation equation some 
assumptions must be made: the tube surface always has a 
uniform constant concentration and its variation along the 
axis direction of the tube array is negligible. The boundary 
conditions in the physical domain are depicted in Fig. 2 
and given below in more detail. 
 
On the inlet AC:  

( ) ( ) ,  0
B B

A A
y u y dy U dy cψ ω∞= = = =∫ ∫  (7) 

On the outlet BD: 

0x x c xψ ω∂ ∂ =∂ ∂ = ∂ ∂ =  (8) 

On the symmetry lines AB and CD: 

0,  0c yψ ω= = ∂ ∂ =  (9) 

On the surface of the cylinders: 

0,  ,  1surface cψ ω ω= = =  (10) 

where x and y respectively represent the normal and 
tangent coordinates. 
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Figure 2: Boundary conditions of stream function, vorticity and concentration in the contactor of in-line array 

A domain decomposition method combined with 
orthogonal grid generation was applied to setup a basic 
cell that was used serially to carry out the computations on 
arrays of a tube array. It was shown by Li et al. (2004a) 
that the periodic property of the flow field can be used to 
extend the computational domain size in the mass transfer 
simulation, that is to say, large arrays of tubes can be 
calculated by the present technique. 

Further details on the numerical solver algorithm can be 
found in the work of Li et al. (2004a, b). 

RESULTS 

In general the concentration distribution in the tube array 
is a strong function of Reynolds number and Schmidt 
number. The variation of flow and concentration fields at 
different Schmidt numbers are illustrated by the contours 
of streamlines and concentration in Figure 4 for λ = 1.5 
and Re = 40. As expected, the concentration distribution is 
mainly dominated by diffusion at low Schmidt numbers, 
while at high Schmidt numbers convective mass transport 
plays a major role. From Figure 4 it can also be seen that 
in the first layer of tubes, where the contour lines are 
densest near the front of the tube, intensive lateral 
transport takes place. The contours in the recirculation 
zones between adjacent pairs of tubes get less dense. 

Finally the concentration profiles behind the last tube are 
different from those in the other layers, implying that the 
wake behind the rear layer has a stronger effect on the 
mass transport than that of recirculation between adjacent 
tubes. In other words, the tubes adjacent to the inlet and 
outlet cannot be neglected and periodic boundary 
conditions cannot be applied in solving the mass transport 
equation. The development of concentration contours 
follows that of the streamlines, because the evolution of 
the concentration boundary layer growth commences at 
the first layer of tubes. For the other layers, low velocity 
recirculating flow interacts with parts of the front half of 
subsequent tubes. It can also be seen from the plots that 
the concentration contours get dense only in those regions 
where the flow has not separated. 

In order to observe the impact of pitch-to-diameter ratio 
on the concentration fields, the concentration contours at 
λ = 1.5, 1.85 and 2.0 at Re = 100 and Sc = 1.0 are 
presented together with their corresponding streamlines. 
There are no clear differences except that the contours 
become less dense in between the tubes, because with 
increasing λ the recirculation space becomes larger, which 
decreases the strength of the recirculation, and 
consequently reduces the convective mass transport.  

 
 
  

 
(a) 

(b) 

(c) 

(d) 

(e) 

Figure 3: Streamlines (a) and concentration contours at different Sc, (b) 0.25, (c) 1.0, (d) 2.5 and (e) 5.0 with Re = 40, 
λ = 1.5 
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(f) 

Figure 4: Streamlines (a), (c) and (e) and concentration contours (b), (d) and (f) corresponding to λ = 1.5, 1.85 and 2.0 at 
Re = 100 and Sc = 1.0 

 

 

Figure 5: Concentration contours at Re = 200, Sc = 0.5 with λ = 2.0 
 

 

For the same Péclet number, the influence of the flow field 
on the concentration distribution can be assessed by 
comparing the concentration contours of Figure 4 (f) with 
Figure 5. In each of these cases Pe = 100, and the 
concentration distributions in these figures are very 
similar, except in the vortex region where the latter case 
shows a stronger recirculation. This phenomenon is very 
similar to the heat transfer process described by Wung and 
Chen (1989). 

Mass Transfer Analysis 

The species concentration contours can provide some 
detailed information about the development of the 
concentration fields inside hollow fiber membrane 
modules. For the design of these units the mass transfer 
rate from or to the tube surfaces is of key importance. The 
mass transfer rate can conveniently be expressed in 
dimensionless form via the Sherwood number. The local 
Sherwood number is defined as: 
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where kloc is mass transfer coefficient, hη is a scale factor 
on the tube surface in normal direction. The bulk 

concentration, cb, sometimes called the mixing cup 
concentration, is defined as: 
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in which dη is the infinitesimal length along the cross 
section of the mass transfer direction. The position of bulk 
concentration in the present study is defined at the 
minimum cross section similar to the bulk temperature 
defined by Krishne Gowda et al. (1998). 

Many factors affect the mass transfer rate between the 
fluid and the fibers. In the following discussion we will 
focus only at the most important factors. 

Local Mass Transfer Coefficients 

The local Sherwood number variations along the tube 
surface are shown in Figure 6. We will discuss them 
consecutively. From Figure 6 (a) it can be seen that the 
profile of Shloc differs significantly from the corresponding 
profiles for the other tubes. This is expected because the 
first tube contacts the incoming fresh fluid and therefore 
the local Sherwood number is higher than the other tubes 
in the array. In the vicinity of the front stagnation point of 
the first tube the concentration gradient is so high that the 
local mass transfer coefficient reaches its maximum at a 
small angle and then gradually decreases to the separation 
point. The spatial variations of local Sherwood numbers 
for the other tubes are quite similar except for the rear 
stagnation point of the last tube.  
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(b) 
Figure 6: The variation of local Sherwood number along each tube surface at different λ. 

 
The peak of the local Sherwood number is pushed 
backwards to an angle of about 60° from the front 
stagnation point. Due to recirculation the transferred 
component recycles between the adjacent tubes and cannot 
be transported downstream as quickly as in the bulk flow. 
The spatial distribution of the local Sherwood number 
along the last tube exhibits a small difference near the 
separation point since in the rear wake the transferred 
component can be brought downstream easier, which 
enhances the mass transfer somewhat.  

In order to obtain a thorough understanding of the 
variation of local mass transfer coefficient of each tube in 
Figure 6 the curves of Shloc distribution of the 10-tube 
array are plotted with λ = 1.5 and 2.0. It can be seen that 
the difference of the local Sherwood number along the 
consecutive tubes gradually reduces, especially at λ = 1.5 
the variations of local Sherwood number have the same 
trend. 

The main difference between the profiles of local 
Sherwood number at λ = 1.5 and 2.0, is that near the 
separation point an evident peak appears for λ = 1.5. This 
can be explained by the fact that at shorter distances 
between the tubes, the recirculation is enhanced. This in 
turn reinforces the mass transfer. This phenomenon can be 
better understood by considering the concentration 
boundary layers shown in Figure 7 and Figure 8. On the 
front of the first tube a very thin concentration boundary 
layer is set up since the oncoming fresh fluid is free of 
mass component. The maximum of the local Sherwood 
number appears within this area. For low values of λ, the 
fluid close to the separation point is transported away from 
the cylinder at a relatively high velocity. This leads to high 
concentration gradients and subsequently to large values 
of the local Sherwood number. After the separation point 
the concentration boundary layer thickness is gradually 
increasing under the influence of the recirculation.  

Comparing the thickness of the concentration boundary 
layers shown in Figure 7 and Figure 8, it can be observed 
that the concentration boundary layers are thinner at lower 

values of the pitch-to-diameter ratio. These features 
explain why at the same flow condition the mass transfer 
coefficient decreases with decreasing λ (see also Figure 6). 
Note that the curves of the first tube shown in Figure 6 are 
also quite similar to the simulation results of Baier et al. 
(1999), who applied a boundary layer technique to 
staggered tube arrays. 

CONCLUSION 

In this paper, numerical predictions of mass transfer at the 
shell side in in-line hollow fiber tube arrays subject to 
cross-flow are presented. The computational grid was 
obtained through a domain decomposition method 
combined with orthogonal grid generation. 

Though the mass transfer is affected by many factors, such 
as the hydrodynamics, the number of tubes and the tube 
length etc, we focused our attention only on the influence 
of hydrodynamics and the pitch-to-diameter ratio on the 
mass transfer in the present study. 

The analysis of the variation of concentration field 
demonstrates that when diffusion is dominant in the mass 
transfer the concentration field tends to be relatively 
homogeneous, whereas when convection is dominant the 
concentration field differs considerably along the 
downstream direction. 

It was shown that the mass transfer coefficient decreases 
drastically after the front tube with the increase of tube 
number along the longitudinal direction especially after 
the first tubes, but tends to a stable decrease. The 
numerical predictions show that the mass transfer 
coefficient is a strong function of Reynolds number, 
Schmidt number and pitch-to-diameter ratio. The mass 
transfer coefficient is increased with increase of Reynolds 
number and Schmidt number, but with decrease of pitch-
to-diameter ratio. 
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(a) The first tube (b) The fourth tube (c) The tenth tube 

Figure 7: The concentration boundary layer on the tube surface at λ = 1.5, the blue colour represents the fresh flow and the 
red colour the concentration on the tube surface. 
 

   
(a) The first tube (b) The fourth tube (c) The tenth tube 

Figure 8: The concentration boundary layer on the tube surface at λ = 2.0, the blue colour represents the fresh flow and the 
red colour the concentration on the tube surface. 
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