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ABSTRACT 
The mirror fluid method is proposed for simulating 
viscous tubular flow of a Newtonian or non-Newtonian 
fluid past an irregular solid obstacle using a simple finite 
difference method for discretization. Suitable flow 
parameters in the solid domain are assigned by a mirror 
relation to ensure the surface segment is subjected to zero 
net shear and normal forces and the boundary conditions 
are enforced implicitly on the solid-fluid surface. The 
SIMPLE scheme and the control volume formulation are 
used for solving the governing equations and a 5th order 
weighted ENO scheme is adapted for discretization of the 
constitutive equations. Some typical numerical examples 
including Newtonian, power-law, Carreau-Bird and 
Oldroyd-B fluids past half-circular, triangular or 
trapeziform obstacles in a straight tube are simulated 
successfully in a two-dimensional axisymmetric 
coordinate system. 

NOMENCLATURE 
A configuration tensor 
g gravitational acceleration, m·s-2 
p pressure, Pa 
r radial coordinate, m 
t time, s 
u  velocity vector, m·s-1 
u axial velocity component, m·s-1 
v radial or transverse velocity component, m·s-1 
x axial coordinate, m  
y radial or transverse coordinate, m  
φ level set function 
µ viscosity, Pa·s 
ρ density, kg·m-3 

Subscripts 
x axial direction  
y radial or transverse direction  
θ azimuthal direction 

INTRODUCTION 
The viscous channel flow of a Newtonian or non-
Newtonian fluid past a solid protuberance is significant to 
many process industry applications. Different methods 
such as experimental, mathematical analyses or numerical 
simulation can be employed for studying the process fluid 
flow. Here the tubular flow of a shear thinning generalized 
Newtonian or viscoelastic fluid in a straight pipe with 
half-circular, triangular or trapeziform solid obstacles on 

the inner surface of the pipe is considered. It is a difficult 
problem for theoretical analysis, but nowadays various 
rapidly developing computational fluid dynamics 
approaches allow us to solve this problem numerically. 

This problem of flow past an irregular solid obstacle, 
especially for a viscoelastic fluid, is scarcely simulated, 
perhaps due to the involved irregular solid surfaces. The 
abrupt change of geometry with singularities may cause 
very high levels of stress, and in turn enhance numerical 
instabilities for a viscoelastic fluid and lead to divergence 
at high Deborah numbers (Dou and Phan-Thien, 1999). 
Many finite element methods have been proposed to deal 
with fluid flow, with the advantage of easily generated 
triangular meshes fitted propagating irregular interfaces, 
and was adopted by most reported numerical studies on 
non-Newtonian flow past a sphere or a cylinder, annular 
flow between two eccentric cylinders, and the 
sedimentation or fluidization of a single and hundreds of 
solid particles (Aboubacar et al., 2002; Caola et al., 2001; 
Fan et al., 1999; Glowinski et al., 2001; Huang et al., 1998; 
Missirlis et al., 2001; Patankar et al., 2001; Singh et al., 
2000; Smith et al., 2003). The finite element method is 
generally more intricate and requires a larger amount of 
computer memory space than the finite difference method. 
Also the continuity equation is not easy to be satisfied for 
incompressible fluids.  

Since a regular Eulerian grid is not easy for computation 
of solid-fluid flow with irregular solid surfaces by finite 
differences, an orthogonal, boundary-fitted coordinate 
system (Ryskin and Leal, 1983) or the unstructured finite 
volume method (Prakash and Patankar, 1984) can be 
applied to model some free or irregular boundary 
problems with good accuracy in enforcing the boundary 
conditions (Dou and Phan-Thien, 1998, 1999; Mao, 2002; 
Mao and Chen, 1997; Missirlis et al., 2001). However, it 
is very difficult to construct the orthogonal curvilinear 
coordinates or boundary-fitted adaptive meshes for 
complicated and seriously deformed interfaces, e.g., the 
tubular flow past a half-circular obstacle on the inner wall. 
Inspired by the fictitious domain method (Glowinski et al., 
2001; Singh et al., 2000) and the ghost fluid method 
(Fedkiw, 2002; Fedkiw et al., 1999), we have accordingly 
developed a novel computational method (Yang and Mao, 
2003), i.e., the mirror fluid method, for numerical 
simulation of the sedimentation of a solid particle in a 
Newtonian fluid on a regular Eulerian grid. The Reynolds 
number, drag coefficient and wake length of a falling 
sphere were well predicted as verified against the 
acknowledged experimental data. In this novel algorithm, 
suitable flow parameters are assigned to the solid domain 
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by a mirror relation to ensure the boundary conditions are 
accurately enforced on solid-fluid surface segments. This 
algorithm has the advantages of using a simple finite 
difference method for discretization and adopting a fixed 
Cartesian grid without need of re-meshing. 

In this paper, the mirror fluid method is used to give a 
comparatively robust and effective finite difference 
scheme for the tubular flow of a Newtonian and a non-
Newtonian fluid, such as power-law, Carreau-Bird model 
and Oldroyd-B fluids, past a irregular solid protuberance 
surface in a laminar flow regime. 

GOVERNING EQUATIONS 
To demonstrate and validate the applicability of the mirror 
fluid method for the simulation of a non-Newtonian fluid 
flow past an irregular solid surface, the laminar flow of a 
generalized Newtonian fluid or an Oldroyd-B viscoelastic 
fluid in an axisymmetric tube is considered. As shown in 
Fig. 1, three typical kinds of solid obstacles are 
considered: half-circular, triangular or trapeziform 
obstacles clinging around on the inner wall of a straight 
tube, where R  is the radius of the half-circular obstacle, 
and W  and 

b

H  are the underside width and height of the 
isosceles triangular or trapeziform obstacle, respectively. 
The mass and momentum conservation equations for an 
incompressible fluid can be written as 

0=⋅∇ u                 (1) 

τ⋅∇++−∇=







∇⋅+

∂
∂ guuu ρρ p

t
     (2) 

where  is the extra stress tensor and for a Newtonian 
fluid 

τ
DN2µ=τ . The rate-of-deformation tensor D  is 

defined as 

( T
2
1 uuD ∇+∇= )                (3) 

The constitutive equation that relates stresses with 
velocity gradients can be given by the generalized 
Newtonian model: 

γτ &µ=                  (4) 
where  is the strain rate defined in terms of the 
deformation tensor D , i.e., 

γ&

D:D2=γ& , and the viscosity 

µ  varies according to the power-law model: 

1−= nk γ&µ                 (5) 
or is given by the Carreau-Bird law: 

( ) 2
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γ&λ
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where  is the consistency index, n  is a parameter 
between 0 and 1 for shear thinning fluids, 

k
0µ  is the zero 

shear viscosity,  is the minimum viscosity achieved as  
shear rate approaches infinity, and 

∞µ

3λ  is assumed to be 1. 
For a viscoelastic fluid, the constitutive equation of 
Oldroyd-B model is 

)(
∇∇

+=+ DD 21 2 λµλ ττ         (7) 

where the upper convected derivative of ∇  is defined by τ

Tuuu ∇⋅⋅∇∇⋅+
∂
∂

=
∇

τττ
τ

τ --t
     (8) 

Let DIA N1E 2-)( µλµ ττ ==Ε - , then Eq. (7) can be 
written in the form of 

DE1 2µλ =+ Ε
∇

Ε ττ                       (9) 
Here 1λ  and 2λ  are characteristic relaxation and 
retardation times for the viscoelastic fluid, respectively, 
and the fluid reduces to a Newtonian fluid when λ  
and to an upper convected Maxwell model when  
and 

21 λ=

01 ≠λ
02 =λ . The fluid viscosity EN µµµ += , where  is 

the purely viscous contribution to viscosity and 
Nµ

NE µµ c=  
is the viscosity of the viscoelastic contribution and 

1=c 2 −λ1λ . 
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Figure 1: A schematic diagram of a straight tube with a 
solid obstacle on inner wall. 

 
In a two-dimensional axisymmetric coordinate system, the 
continuity and Navier-Stokes equations and the 
constitutive equation (9) for the Oldroyd-B model in terms 
of configuration tensor can be written in component form: 
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where 1≡r  for Cartesian coordinates, yr ≡  for cylindrical 
coordinates and curly brackets indicate the term presents 
only in cylindrical coordinates, and Eq. (16) for the 
azimuthal normal component of configuration tensor 
( ) evolution is also needed only in cylindrical 
coordinates. 

θθA

MIRROR FLUID METHOD 
The detailed idea of the mirror fluid method has been 
presented by Yang and Mao (2003). We model the whole 
domain as a regular Eulerian one by taking the flow in the 
subdomain occupied by the solid obstacle (i.e., the mirror 
fluid domain) as the flipped mirror image of the outside 
flow in the real fluid at the same surface segment, i.e., 
rotating the outside flow field, pressure and stress field by 
180 degree around the surface segment (as shown in Fig. 
2). Therefore, the shear rates across the solid surface are 
assigned the same magnitude but with opposite direction 
to make a surface segment subjected to a zero net force, 
i.e., the no-slip boundary conditions are enforced 
implicitly on irregular solid-fluid surface segments by a 
mirror relation. 

As depicted in Fig. 2, we can find the mirror location of 
 in the real fluid region corresponding to node 

 in the fictitious domain occupied by the solid 
obstacle (i.e., the mirror fluid) in terms of a distance 
function defined similar to that in the level set approach 
(Yang and Mao, 2002). The signed algebraic distance 
function denoted as 

),(M MM yx

),(S SS yx

φ , being positive in the fluid phase, 
negative in the solid phase and zero at the obstacle-fluid 
interface, to facilitate the mirror calculations. In two-
dimensional Cartesian or cylindrical coordinates, the unit 
normal vector passing through node S  to the interface is 
denoted as 









=











∇
∇

=
S

S
S

S yn
nx

φ
φn                          (17) 

So the coordinates of M , the mirror to S , should agree 
with the following Eq. (18) based the governing equation 
for the straight line along  passing through S : Sn

S

SM

S

SM

yx n
yy

n
xx −

=
−                          (18) 

and can be derived by solving Eqs. (18) and (19) coupled 
with the condition in Eq. (20): 

2
S

2
SM

2
SM )2()()( φ=−+− yyxx                     (19) 

0SM ≤φφ          (if , then 0S ≤φ 0M ≥φ )      (20) 

 

 
Figure 2: Schematic diagram of solid-fluid interface for 
the mirror fluid method. 
 
Then for each node ( S ) in the solid obstacle there is a 
mirror image node ( ) in the fluid. The fictitious 
velocity, pressure and stress of node S  in the mirror fluid 
are obtained easily: 

M

MMS 2)( uUUUuu −=+−−=                    (21) 

MS pp =                                             (22) 

MS ττ −=                                             (23) 
where  is the velocity vector of the solid obstacle 
(

U
0=U  for this work), and for a Newtonian or generalized 

Newtonian fluid we need not apply Eq. (23) to assign the 
stress. 

Such specification for flow parameters ensures that the 
shear and normal stresses on the two sides of the solid-
fluid interface and endued with the same magnitude and 
opposite direction. The density and viscosity of the mirror 
fluid are designated simply equal to those of the 
corresponding real fluid, i.e.,  andMS ρρ = MS µµ = . In 

this way, we can update the fluid velocity field including 
the mirror fluid in the entire computational domain with 
the solid-fluid interface boundary conditions enforced 
implicitly and with no need of boundary-fitted 
coordinates. Moreover, it is noted that only a band of 
several mirror nodes close to the obstacle surface is 
actually needed by this algorithm. All the nodes in the 
particle domain whose neighbor nodes are all in the same 
domain are actually irrelevant to the solution and can be 
blocked out from the computation as suggested by 
Patankar (1980). 

COMPUTATIONAL SCHEME 
No-slip conditions are imposed for velocity on the solid 
surface. For a fully developed tubular flow, 0== vu , 

0=∂∂=∂∂ xvxu , and from the continuity equation 
0=∂∂ yv . The configuration tensor for the Oldroyd-B 

model on the solid wall is thus expressed in terms of the 
velocity gradient through solving the momentum and 
constitutive equations: 
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For a Newtonian fluid, we can directly use the fully 
developed parabolic velocity distribution as the inflow 
condition. For a non-Newtonian fluid, on the other hand, 
the inflow velocity and configuration tensor profile can be 
obtained by solving the governing equations for a steady 
flow in a straight tube with a regular and smooth inner 
wall. The initial value of A  is taken as I , implying the 
Oldroyd-B fluid is in a relaxed state. 

The control volume formulation with the power-law 
scheme and the SIMPLE algorithm described by Patankar 
(1980) are adopted to solve Eqs. (10) to (16) for the fluid. 
A staggered grid is used and the different dependent 
variables are approximated at different mesh points. The 
normal stresses, i.e., A ,  and , are located at the 

same position as the pressure variables, while the shear 
stresses, i.e., A , at the corners of the control mesh cells 

for velocities. A 5th order weighted ENO scheme (Fedkiw 
et al., 1999) for discretization of the constitutive equations 
(13)~(16) is applied to achieve higher order accuracy in 
space, and a third-order Runge-Kutta scheme (Yang and 
Mao, 2002) in time is used to avoid any instability and 
divergence in the temporal integration of configuration 
tensors evolution equations. 

xx yyA θθA

xy

NUMERICAL RESULTS AND DISCUSSION 
The above-mentioned governing equations are non-
dimensionalized by introducing characteristic scales and 
the Reynolds and Deborah numbers are then defined as 

µ
ρdURe ≡  ,            

d
UDe 1λ≡                          (25) 

where U  is the maximum average cross-section velocity 
in the tube and  is the diameter of the tube ( d ).  d t2R=

Typically we solve the tubular flow past a solid obstacle 
with tb RR =0.2 in a computational domain 

}{ ttt ,15( RyRRx ≤≤−≤≤=Ω

t3R=

Re

0), yx  with the center 

of the solid obstacle located at x  to assure a fully-
developed downstream flow. The time step is taken 
according to the Courant-Friedrich-Lewy conditions and 
also the restrictions due to viscous terms to make the 
numerical procedure stable and convergent (Yang and 
Mao, 2002, 2003). The effect of grid fineness on 
computations has been investigated. Grids of 93×10, 
141×16, 171×20, 186×22, 244×30 and 315×40 are used to 
test the convergence of the tubular flow by comparing the 
wake length behind a half-circular obstacle for a non-
Newtonian fluid satisfying the Carreau-Bird law with 

=204. The predicted wake length decreases closer to a 
constant value with the increase of the total number of 
nodes and a grid with 244×30 is sufficient for spatial 
computational accuracy. Therefore, the grid of 244×30 is 
adopted for subsequent simulations. 

The streamline contours for Newtonian, power-law and 
Carreau-Bird fluids past a half-circular obstacle with the 
same initial inflow velocity ( u =0.01m/s) are presented in 
Fig. 3, where Re  is the average cross-section Reynolds 

number of fully-developed tubular flow without a solid 
obstacle. The shear thinning of generalized Newtonian 
fluids increases the Reynolds number and the length of 
vortex behind the solid obstacle. The mirror fluid method 
is also used to simulate successfully the viscous flow with 
other irregular solid surfaces, such as triangular and 
trapeziform solid protuberance surfaces. The flow field 
and pressure distribution of a Carreau-Bird law fluid past 
different obstacles are compared in Figs. 4 and 5. As 
shown in Figs. 6~9, due to the influence of elasticity the 
contours of streamline, pressure and velocity for a 
viscoelastic fluid past a half-circular obstacle in a tube 
differ obviously from those for a Newtonian or 
generalized Newtonian fluid. The vortex and the 
distributions of velocity and pressure are similar to the 
results for an Oldroyd-B fluid past a cylinder in channel 
with =0 (Dou and Phan-Thien, 1999). Beside the 
discussion of computational restriction at high Deborah 
number for a viscoelastic fluid, the effects of Reynolds 
number, Deborah number and 

*

Re

tb RR  on the wake length, 
normal and shear stresses and drag force will be detailed 
in another paper. 
 

 

(a) Newtonian fluid ( =157.5, =100.0) Re *Re

 

 

(b) power-law model fluid ( Re =209.2, Re =127.5, k =0.1 
Pa·s, n =0.8) 

*

 

 

(c) Carreau-Bird law fluid ( =203.9, =126.2, Re *Re
0µ =0.1 Pa·s, ∞µ =0.1 0µ , n =0.8) 

Figure 3: Streamline contours for different fluids past a 
half-circular obstacle. 
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(a) Triangular obstacle  ( =177.1, =126.2) Re *Re

 

 

(b) Trapeziform obstacle ( =185.3, Re =126.2) Re *

Figure 4: Streamline contours for a Carreau-Bird law 
fluid past non-spherical obstacles ( 0µ =0.1 Pa·s, 

∞µ =0.1µ0, n =0.8). 

 

 

 

(a) Half-circular obstacle ( Re =203.9, *Re =126.2) 

 

 

(b) Triangular obstacle ( =185.3, *Re =126.2) Re

 

 

(c) Trapeziform obstacle ( Re =185.3, =126.2) *Re

Figure 5: Contours of pressure p  for a Carreau-Bird law 
fluid past different obstacles ( 0µ =0.1 Pa·s, ∞µ =0.1 0µ , 

=0.8). n

 

 

Figure 6: Streamline contours for an Oldroyd-B fluid past 
a half-circular obstacle ( =1.93, =7, =19.8, 

=12.5). 
De c Re

*Re

 

 

Figure 7: Contours of pressure p  for an Oldroyd-B fluid 
past a half-circular obstacle ( =1.93, =7, Re =19.8, 

=12.5, 
De c

*Re tb RR =0.2). 

 

 

Figure 8: Contours of axial velocity u  for an Oldroyd-B 
fluid past a half-circular obstacle ( De =1.93, =7, 

=19.8, =12.5). 
c

Re *Re
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Figure 9: Contours of radial velocity v  for an Oldroyd-B 
fluid past a half-circular obstacle ( De =1.93, =7, 

=19.8, =12.5). 
c

Re *Re

CONCLUSION 
A novel mirror fluid method is presented for numerical 
simulation of viscous tubular flow of a Newtonian or non-
Newtonian fluid past an irregular solid obstacle using a 
simple finite difference method for discretization. The 
entire computational domain is modeled as a fixed 
Eulerian one without using a body-fitted coordinate 
system and we assign suitable flow parameters in the solid 
domain by a mirror relation to ensure the surface segment 
subjected to zero net shear and normal forces.  

The SIMPLE scheme and the control volume formulation 
are used for solving the governing equations. Some typical 
numerical examples including Newtonian, power-law, 
Carreau-Bird and Oldroyd-B fluids past a half-circular, 
triangular or trapeziform obstacle fixed on the inner wall 
of a straight tube are simulated successfully in a two-
dimensional axisymmetric coordinate system. The vortex 
and the distributions of velocity and pressure for a 
viscoelastic fluid differ obviously from those for a 
Newtonian or generalized Newtonian fluid. These 
numerical tests indicate the mirror fluid method is simple 
and effective in simulating viscous flows with irregular 
solid surfaces. 

The mirror fluid method can be extended to multiple 
particle problems with less restriction, especially when 
complicated and seriously deformed solid-fluid interfaces 
involved. In future work, the mirror fluid method will be 
used to compute the motion of a non-spherical (e.g., 
ellipsoidal and slender) solid particle with rotation or 
tilting, and multi-particle systems with particle collisions 
in a Newtonian or non-Newtonian fluid. 
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