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ABSTRACT 
Phase change is of great importance in the materials and 
crystal growth processes.  The control of this phenomena 
permits growth of high quality pure crystals.  Most papers 
on Bridgman crystal growth configurations present two-
dimensional (2D) or axisymmetric calculations.  Recently 
three-dimensional (3D) computations have been limited to 
high Prandtl number.  This study focuses on the three-
dimensional character of low Prandtl number flows and on 
symmetry breaking phenomena which can produce some 
unsteadiness in the flow and consequently perturb the 
solid/liquid interface shape and dopant distribution.  Only 
the hydrodynamics in the melt is analyzed in this paper.  
In past papers the critical stability limit for the onset of the 
natural convection in two-dimensional flows was 
undertaken and the threshold value for breaking symmetry 
and unsteadiness were identified.  In the present work, this 
problem is studied using three-dimensional simulations 
thus overcoming the limitation of the 2D assumption.  It 
has been found that the initially steady symmetric flow in 
the 3D case becomes asymmetric for lower Ra number 
than for the 2D case.  The breaking in symmetry occurs 
firstly in the transverse plane.  For the relatively low Ra 
number we still have no intensification in the global heat 
transfer but it appears that the heat transfer increases 
locally on the bottom and decreases on the vertical active 
walls.  The classical spiral flows typical for the 3D effect 
(in the third direction) is also identified. 

NOMENCLATURE 
Ax  x aspect ratio, Lx/Lz 
Ay  y aspect ratio, Ly/Lz 
g gravitational acceleration [m s-2] 
h  dimensionless heating height, scaled using Lz 
Lx  dimension of cavity in x direction [m] 
Ly  dimension of cavity in y direction [m] 
Lz  dimension of cavity in z direction [m] 

Nudown Nu on bottom wall 
1 1

0 0 0y z x

dy dz
x
θ

= = =

∂
=

∂∫ ∫  

Nuup Nu on top wall 
1 1

0 0 1y z x

dy dz
x
θ

= = =

∂
=

∂∫ ∫  

NuLat Nu on lateral walls 
1 1

0 0 0,1y x z

dy dx
x
θ

= = =

∂
∂∫ ∫=  

Pr Prandtl number, =ν/α 
Ra Rayleigh number, 3

T Z g   T L /( )β ∆ ν= α  

T dimensional temperature [K] 
u, v, w x, y, z components of dimensionless velocity 
x, y, z dimensionless Cartesian coordinates of  system 

Greek symbols 

α thermal diffusivity [m2 s-1] 
βT coefficient of volumetric expansion [K-1] 
θ dimensionless temperature, =(T–TC)/(TH–TC) 
µ dynamic viscosity  [kg m-1 s-1] 
ν kinematic viscosity [m2 s-1] 
ρ density [kg m-3] 

INTRODUCTION 
Investigation of stability for melt flows under crystal 
growth conditions permits one to qualify the critical 
operating parameters of crystal growth.  Hence there has 
been increased interest in the flows of liquids metals in 
cavities subjected to external temperature gradients.  
 
Stable dynamic solutions are important for practical 
applications because of their impact on the constitutional 
control (dopant distribution).  During solidification of 
binary alloys the thermal and concentration buoyancy 
forces either aid (or oppose) each other, depending on the 
type of alloy and process of the heating (and cooling). 
 
Fluids heated from below exhibit very strong non-linear 
behaviour which is of the interest in many scientific fields. 
The classic Rayleigh-Bénard problem offers a first 
approach to studying the complexity of the flow, which 
evolves from a conductive solution to a convective one 
and it can be considered as the first predictive method of 
coupling with the solid/liquid transition.  For example, in 
the electronic industry, interface shape is strongly affected 
by convection (Brice 1976).  
 
2D models are commonly used for predictive numerical 
investigation of directional solidification configurations 
based on solutal control (Mc Fadden and Coriell 1987, 
Impey and Riley 1991), under low gravity conditions 
(Alexander et al. 1991) or on the thermal control 
(Larroudé et al. 1994).  
 
In these cited works a 2D model was utilized for both the 
restricted fluid phase and full solidification model.  
Computational results presented in these papers were used 
to analyze a dynamic regime interacting with the 
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solid/liquid transition.  Recent extensions to 3D 
calculations (Lan and Wang 2001) are limited to high 
Prandtl number and do not cover the extensive situations 
encountered in real crystal growth.  
 
In this study we focus on thermal natural convection 
which induces symmetry breaking for low Prandtl number 
material.  The configuration considered by the authors in a 
previous works (El Ganaoui 1998, Kaenton et al 2003) is 
extended here to the 3D case.  

MODEL AND NUMERICAL METHOD 
The problem under consideration is sketched in Figure 1. 
It consists of a Cartesian domain filled with a low Prandtl 
number liquid metal (Pr =0.01), heated from below and 
cooled from the top. The left and right walls are heated up 
to the level of the height h (=H/Lz) and are adiabatic in the 
remaining part (1-h). The front and the rear walls are set 
to be adiabatic.  

Governing equations 
The thermo physical properties of the fluid are treated as 
constants.  Newtonian and laminar flow is assumed and 
the Boussinesq approximation has been used, in which the 
liquid density is assumed to be constant except in the 
buoyancy term of the momentum equation. 
 
We introduce the following non-dimensionalisation, 

( ) ( )

2

2 2
z z z z

z z z z

C H C

x x / L , y y / L , z z / L , t L /

u u L / , v v L / , w w L / , P P L /
T T / T T

τ ν

ν ν ν

θ

′ ′ ′ ′= = = =

′ ′ ′ ′= = = =

= − −

ρν  

in which Lz is the length of the cavity in the z direction, ν 
is the kinematic viscosity, ρ is the fluid density and TH and 
TC are the hot and cold wall temperatures respectively.  
 
With the above assumptions and dimensionless variables, 
the governing equations to be solved can be written as, 
 
Continuity 

  
0u v w

x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (1) 

X-Momentum 
 

 2u u u u P Rau v w
x y z x Pr

θ
τ

∂ ∂ ∂ ∂ ∂
+ + + = − + + ∇

∂ ∂ ∂ ∂ ∂
u  (2) 

 
Y-Momentum 
 

  

2v v v v Pu v w
x y z yτ

∂ ∂ ∂ ∂ ∂
+ + + = − + ∇

∂ ∂ ∂ ∂ ∂
v  (3) 

Z-Momentum 
 
 2w w w w Pu v w
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∂ ∂ ∂ ∂ ∂

+ + + = − + ∇
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Energy 
 

 21
u v w

∂ θθ θ θ
θ

τ ∂
∂ ∂ ∂

+ + + = ∇  (5) 
y zx Pr∂ ∂ ∂

3
T ZRa  g   T L /( )β ∆ να=

 
The non-dimensional parameters are the Prandtl number 
Pr=ν/α and Rayleigh number, . 

 
Velocity is assumed to be no slip on the entire boundary 
of the domain and the temperature boundary conditions 
are:  
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(b) 
 
Figure 1: Schematic diagram of (a) the physical domain 

and (b) the simplified configuration studied. 
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Method of solution 
Equations (l-5) are approximated by using a staggered, 
non-uniform control volumes grid, and a third order 
accurate QUICK scheme (Leonard 1979) for the advection 
terms. ULTRA-SHARP (Leonard and Mokhtari 1990, 
Leonard and Drummond 1995) flux limiter is used to 
remedy any non-physical oscillations.  The SIMPLE 
algorithm is used to couple momentum and continuity 
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equations.  The momentum equations are solved by the 
implicit procedure (SIP), which is extended here to handle 
3D problems.  The discretization of the pressure 
correction equation results on a symmetric coefficient 
matrix that is solved using the conjugate gradient (CG) 
method.  The coefficient matrix resulting from the 
discretization of the energy equation is non-symmetric and 
is solved iteratively by the BI-CGSTAB method.  SSOR 
preconditioning is used for accelerating the convergence 
rates of both the CG and the BI-CGSTAB methods.  To 
reduce the high computer times inherent in the solution of 
3D natural convection problems, a full approximation 
storage (FAS) full multigrid (FMG) method (Sezai and 
Mohamad 2000) is applied to the problem.   
 
The equations are solved by a four level fixed V-cycle 
procedure starting at the coarsest grid level and 
progressing to the finer grid level.  A tri-linear 
interpolation is used for all variables, an area weighted 
average procedure is used for all quantities defined on the 
control-volume surface (such as velocities) and a volume 
weighted average procedure is adopted for all quantities 
defined at the control-volume centre such as pressure and 
temperature.  For time dependant problems, a second 
order accurate Euler scheme is used. 
 
In this work 82x82x82 (and 102x102x102) irregular grids 
are used on the finest level.  The non-uniform grids have 
denser clustering near the surface boundaries.  The 
computational code was validated by comparison with the 
numerical results of Mukutmoni and Yang (1993) and the 
3D test case presented in (Bennacer et al. 2001). 

RESULTS AND DISCUSSION 
The effect of the heating size parameter on the resulting 
heat transfer on the bottom and top of the cavity are 
presented in the figure 2.  Transfers rates are not equal, 
except for h = 0 case, because of the additional heating on 
the two lateral walls (z = 0 and z = 1).  The upper heat 
transfer balances the contribution of the lower and two 
lateral surfaces. 
 
For Ra = 3x103, the transfer is mainly diffusive with weak 
flow and it is totally conductive for the h=0 case. 
 
The difference between the average heat transfer on the 
lower and the upper surface increases with h because of 
the increasing contribution of the two lateral surfaces.  For 
considerable heating sizes (h) the main transfer is from the 
side to upper part with a very small contribution from the 
bottom surface.  This conclusion is valid during the 
mainly conductive regime. 
 
The effect of Rayleigh number on the heat transfer at the 
top of the cavity is presented in Figure 3 for different h 
values.  For lower Ra the resulting Mussel number Nu is 
constant and corresponds to the previously discussed 
diffusive heat transfer.  
 
For a given Ra number the increasing in h induces higher 
transfer which is not equal to 1, except for h=0, since we 
used a one dimensional diffusive heat transfer given by  

 as the reference heat flux.  Above 

certain Ra numbers (corresponding to the appearance of 
the convective solutions) an increase in the heat transfer is 
observed.  The transitional Ra value depends on h. 

( ) /ref H C Xq T Tλ= −

 
It should be noticed that the case h=0 corresponds to the 
standard Rayleigh-Bénard bifurcation problem.  In this 
case one main cell, due to the heating at the bottom wall, 
is obtained.  This cell can rotate either clockwise or 
counter-clockwise and also in the diagonal plane 
depending on the governing parameters.  Figure 4 shows 
the local heat transfer coefficients (Nu number) on the hot 
bottom surface for different Ra in the transitional range. 
The local heat transfer distribution can be used to illustrate 
the flow pattern where the higher Nu values correspond to 
the location of the impacting jet on the surface and the 
lower Nu values to the location of the rising flow.  The 
isocontours of the local heat transfer on the bottom  (x=0) 
correspond to one rotating main cells inside the cavity 
under three situations: a diagonal one in the z-x and y-x 
planes.  
 
The wavelength and the pattern of the obtained flow 
depend on several parameters: this is beyond the scope of 
the present study. 
 
 
The global transition from diffusive to convective solution 
(Fig. 3) seems to be similar for the different cases. 

Nevertheless it is clear that lateral heating modifies the 
flow structure.  
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Figure 2: Heat transfer on upper and lower surfaces for 

different heating sizes h (Ra=103 , Ax=Ay=1). 
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Figure 3: Heat transfer as a function of Ra on the upper 

surface for different heating sizes h (Ax=Ay=1)  L
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Figure 4: The local Nusselt number on the hot-lower 

surface, for h=0, at different Ra, (a) 4x103, 
(b) 4.5x103 and (c) 5x103. 
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The temperature field is presented in figure 5(a), showing 
cooling on the upper surface, heating on the bottom 
surface and the two vertical surfaces, and the adiabatic 
areas.  
 
The hot fluid goes up along the heating vertical plate and 
moves down in the vertical x-y mid-plan.  The flow 
consists of two counter-rotating main cells inside the 

cavity, as shown in figure 5(b) by the stream-trace in the 
vertical x-z mid-plane.  This motion brings cold fluid from 
the top to the bottom wall through the core of the cavity 
(see figure 5(b)).  The resulting flow for this Ra exhibits a 
weak spiral flow, which is similar to a 2D flow structure 
in a very deep cavity. 
 
Increasing the Ra number (in the lower Ra range) 
modifies the flow intensity without significantly affecting 
the overall heat transfer (Fig. 3) but it does modify the 
ratio between lateral and lower surface contributions 
(Table 1).  
 

Nu 

Ra 100 101 102 103 2x103 3x103 4x103

Down 0.258 0.258 0.260 0.279 0.304 0.310 0.337 

Lat. 0.69 0.69 0.69 0.69 0.686 0.684 0.68 

Top -2.10 -2.10 -2.10 -2.12 -2.13 -2.14 -2.15 

Table 1:  Nu for different Ra (Ax=Ay=1); h = 0.75 
 
The resulting symmetric regimes (previously discussed) 
exhibit increases in the flow intensity with Ra and h.  The 
flow looses this symmetry for Ra = 4x103.  This feature is 
seen in the figure 6.  This figure shows isocontours of 
local heat transfer on the bottom horizontal surface (x=0) 
for different Ra and represents four different situations: 
 
For low Ra (≤ 101), solutions exhibit a diffusive 
temperature field (Fig. 6(a)).  The maximum gradient is in 
the middle due to the imposed thermal boundary 
conditions. 

y 

 
For intermediate Ra, the increase in the flow induces 
higher local Nu in the centreline due to arriving of the cold 
fluid.  The effect of the third direction is obvious as the 
friction, close to the y=0 and 1 walls, damps the flow, so 
that the local transfer is lower. See figure 6(b). The 
maximum heat transfer is in the centre of the surface. 
 
For Ra =3x103 we have a break in the symmetry in the 
transversal direction (figure 6(c)) which appears earlier 
than in the 2D case and is in the plane perpendicular to the 
one obtained in the 2D case.  The vertical y-x mid-plane 
symmetry vanishes and a full 3D solution is obtained.  For 
this situation we still have a particular symmetrical field in 
the x-z mid-plane and the vertical line (y=z=0.5) 
corresponds to a symmetrical line.  For higher Ra (4x103) 
we have a global non-symmetrical flow with the main 
flow moves either to front plan (y=0) or rear plane (y=1). 
 
The third case with symmetrical line consists of two 
counter-rotating rolls in the y direction.  The rolls are of 
equal sizes in the middle vertical plane x-z and a non-
equal size behind and in front to the plane.  An example of  

z



 
 

 
(a) 

 

 
(b) 

 
Figure 5: (a) The 3D temperature field and (b) Stream 

traces at the (y=0.5) lateral plane x-z,
for Ra = 1x103. 
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Figure 6:  Local Nusselt number on the hot-lower surface 

(y-z plane) for different Ra, (a) 1x101,(b) 2x103 

and (c) 3x103. 

such a situation is illustrated on figure 7 where stream 
traces are represented on three different planes (y= 0.15, 
0.5 and 0.85).  The flow shape versus the depth is obvious 
and this explains the local heat transfer distribution 
illustrated before in figure 6. 
 
For the 2D case we have a symmetrical solution until  
Ra = 5000 and an asymmetric one for Ra ≥ 7000.  It 
became unsteady for Ra > 30000 and periodic for  
Ra > 40000 (El Ganaoui et al. 1998).  In the 3D case the 
asymmetric and unsteady case appear for lower Ra in 
comparison to the 2D approach.  

 
The asymmetric solution could be due to the chosen 
aspect ratio.  Analysing the effect of the depth of the 
cavity, a 2D asymmetrical flow is obtained for low Ay and 
fully 3D for high Ay.  The depth dependency illustrates 
clearly the existence of wave-length effects in the y 
direction.  The flow is similar to the one shown in figure 7 
for LY =1 (cubical case), however it is more asymmetric.  
These result give a clear explanation of the asymmetric 
steady state solution obtained using the 2D assumption.  
This solution is the one obtained in front and behind the 
central symmetric plane.  
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Figure 7: Stream traces at different lateral planes  

(a) y=0.15, (b) y=0.5 and (c) y=0.85, for  
Ra = 3x103, Pr = 0.01 and cubical cavity. 

 

CONCLUSION 
In this work three dimensional computations of a 
simplified phase change problem in a vertical Bridgman 
configuration heated from below are presented.  The effect 
of the Ra number, the heating size h (furnace size) and the 
aspect ratio LY on the flow structure and heat transfer 
distribution is analyzed.  A comparison of the 3D results 
with a previous 2D approach has been discussed and the 
resulting differences in the appearance of breaking in 
symmetry for lower Ra (and in the transversal plane) is 
presented.  This analysis also illustrates the limitation of 
the 2D assumption in identifying such transitions.  The 
flow becomes 3D for relative low Ra and the preliminary 
results illustrate the effect of the depth of the cavity on the 
mean flow and the existence of a wavelength in the third 
direction.  
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