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ABSTRACT 
This work examines pulsatile flow in a straight tube with 
an axisymmetric constriction that reduces the local cross-
sectional area by 75%.  The model is a much-simplified 
representation of physiological flow in an artery that has a 
constriction produced by atherosclerotic plaque.  Through 
linear stability analysis of the axisymmetric flow we find 
that there are two different global absolute modes leading 
to localised turbulent transition.  Both of these are 
associated with vortex rings that are blown out of the 
contraction during each pulse.  Using DNS we show that 
the turbulent bursts move upstream to lie close to the 
stenosis, even though the instability modes have maximum 
energy far downstream.  Under suitable conditions, the 
vortex rings may trail extended shear layers in their wakes, 
and these are receptive to noise through a convective 
instability mechanism.  The shear layer instability can also 
interact with, and promote, the vortex-ring instabilities. 

NOMENCLATURE 
D tube diameter 
k azimuthal wavenumber 
L stenosis length 
p pressure 
r radial coordinate 
Re Reynolds number 
t time 
t0 phase point in pulse period 
T pulse period 
u  velocity 
um area-average velocity 
Ured reduced velocity 
z axial coordinate 
 
α Womersley number 
ε perturbation 
µ Floquet multiplier 
σ Floquet exponent 
θ azimuthal coordinate 
ν kinematic viscosity 

INTRODUCTION 
Stenotic geometries typically occur in initially healthy 
arteries as a result of atherosclerotic lesions that form in 
the wall of the vessel.  It is known that there is a close 
connection between arterial disease and local flow features 
that lead to low and fluctuating wall shear stresses (e.g. 
flow separation).  Also, it is not uncommon to find 
multiple inline stenoses in diseased individuals.  These 
findings have stimulated a number of CFD studies of 

flows in stenotic geometries, from highly idealised 
representations through to detailed reconstructions derived 
from individual patients.  Our work addresses the 
fundamentals of instability mechanisms with an idealised 
axisymmetric geometry and a simple, single-harmonic, 
non-reversing pulsatile inflow, in order to form a basis for 
understanding more complex real flows. 

Geometry and inflow 
The geometry of the stenosis is shown in Figure 1(a).  The 
origin of our (z, r, θ) coordinate system is at the centre of 
the throat.  The particular geometry chosen has D/Dmin=2 
(on the basis that this is the minimum constriction in 
diameter that can reliably be detected using ultrasound), 
also L/D=2, and is a sinusoidal shape. 
 

(a)  

(b)  
Figure 1: Schematic diagram of stenosis geometry, and of 
the area-averaged inflow condition. 
 
The area-averaged inflow waveform is the sum of a steady 
mean flow um a single harmonic of relative amplitude 0.75 
and period T, so that the ratio of peak:mean flow is 1.75, 
as illustrated in Figure 1(b).  While the mean flow can be 
represented by the Hagen-Poiseuille parabolic profile, the 
profiles of oscillatory components must be represented 
using (complex) Bessel functions, as originally shown by 
Sexl (1930).  These can be added together linearly, since 
the nonlinear terms in the Navier-Stokes equations reduce 
to zero for parallel incompressible flows.  Two 
dimensionless groups that describe the remainder of the 
problem are the Reynolds number Re=umD/ν, and a 
reduced velocity Ured=umT/D.  The reduced velocity can be 
considered as a dimensionless pulse period.  An 
alternative non-independent dimensionless number often 
used in this area of work is the Womersley parameter 
α=(πRe/2 Ured)1/2.  We have used the reduced velocity so 
that the effects of viscosity are represented only in the 
Reynolds number. 
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Figure 2: Spectral element mesh for discretisation of the meridional semiplane in cylindrical coordinates. 

 

 
Figure 3: Example of an axisymmetric flow, for Re=400 and Ured=2, at one instant of the pulse cycle.  Contours of vorticity. 

 

METHOD 
Our investigation couples numerical Floquet analysis of 
the stability of axisymmetric pulsatile flows to three-
dimensional disturbances and three-dimensional direct 
numerical simulation (DNS) of the growth of instabilities 
to turbulence.  The stability analysis, which is based on 
time integration of the linearised Navier-Stokes equations 
(see e.g. Tuckerman & Barkley 2000), uses the same 
underlying discretisation as the DNS. 
The incompressible Navier-Stokes equations are treated in 
cylindrical coordinates using a mixed implicit-explicit 
pseudospectral velocity correction scheme that is second-
order in time.  Spatial discretisation is carried out using 
Gauss-Lobatto-Legendre nodal basis spectral elements in 
the meridional semiplane and Fourier expansions in the 
azimuthal direction.  Details of the discretisation are 
supplied in Blackburn and Sherwin (2004), where 
exponential spatial convergence of the method is 
demonstrated for non-axisymmetric flows. 
The spectral element macro mesh used is shown in Figure 
2.  There are 743 spectral elements, concentrated around 
the stenosis throat and where the shear layers are thinnest.  
A spectral element basis function order Np=7 was found to 
be adequate for both stability analysis and for DNS 
computations.  A comparatively long outflow length was 
found necessary in order to capture the Floquet instability 
modes, which can reach their greatest amplitude far 
downstream of the stenosis. 
Temporal Floquet analysis examines the behaviour of a 
perturbation u’ to a T-periodic base flow U, to determine 
whether the perturbation grows or decays from cycle to 
cycle. In a linear analysis, the evolution equations for the 
perturbation flow are the Navier-Stokes equations 
linearised about the base flow. Perturbation solutions can 
be written as a sum of Floquet modes u(t0)exp[σ(t-t0)] 
where u(t0) is a T-periodic Floquet eigenfunction, 
evaluated at arbitrary phase t0 and σ is a Floquet exponent. 
Floquet multipliers µ are related to the Floquet exponents 
by µ=exp(σT), and indicate how much the Floquet modes 
grow (or shrink) from cycle to cycle. In general, the 
exponents, the multipliers, and the eigenfunctions can be 

real or occur in complex-conjugate pairs. Instability occurs 
when a multiplier leaves the unit circle, µ=1, or 
equivalently when the real part of a Floquet exponent 
becomes positive. In the present treatment, Floquet modes 
can take any spatial form supported in a fixed frame of 
reference by the global (r, z) discretisation and hence by 
definition an unstable Floquet mode is a global (absolute) 
instability. 
Stability analysis is computed using a hybrid block-power-
Krylov method described by Tuckerman and Barkley 
(2000), and Blackburn (2002).  The method relies on the 
repeated application of an operator (here, the linearised 
Navier-Stokes equations, integrated over a period T) rather 
than explicit computation of the equivalent matrix 
operator, and delivers a small number of leading modes. 

AXISYMMETRIC BASE FLOWS 
An example of an axisymmetric flow, visualised through 
contours of vorticity, is shown in Figure 3.  It should be 
noted that approximately 1/3rd of the computational 
domain is represented in this figure.  Just downstream of 
the stenosis throat (near z/D=1), a vortex ring that is in the 
process of rolling up can be seen in section.  Further along 
the tube (near z/D=7) is the vortex ring from the previous 
pulse cycle, and at z/D=13, the vortex ring from the pulse 
cycle previous again is seen as it leaves the visualised 
region.  Another significant feature of the vorticity field 
are the shear layers that trail in the wake of each vortex 
ring. 
A comparison of the axial locations of vortex rings at the 
same phase point t0, but at various reduced velocities, is 
shown in Figure 4.  Immediately evident is the fact that the 
initial dimensionless speed of the vortex rings is 
approximately 3, independent of pulse period.  The 
asymptotic dimensionless speed of the rings tends towards 
a value of unity (which is the mean speed of the time-
average flow), although the process is only able to 
complete at the higher reduced velocities. This can be 
attributed to the fact that the vorticity in the rings diffuses 
away more quickly at smaller pulse periods, and 
individual rings become difficult to identify comparatively 
rapidly.  
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Figure 4: Dimensionless axial locations of base flow 
vortex rings as a function of dimensionless time (ring 
formation index times Ured) at various values of Ured, all 
computed at Re=400. 
 
The relative uniformity of the initial speeds is remarkable 
given that the amount of vorticity which is shed from the 
detachment point near the stenosis throat per pulse must 
increase with pulse period, and that the propagation 
velocity of vortex rings is approximately linearly related to 
the amount of circulation they contain.  The resolution of 
this apparent paradox is that the vortex rings at the head of 
each pulse must contain approximately the same amount 
of initial circulation, independent of pulse period, while 
the `excess’ shed vorticity is left in the shear layers that 
trial in the wakes of the rings.  These shear layers become 
more extensive at higher reduced velocities.  Similar 
behaviour has been noted for the production and 
propagation of individual vortex rings into unconstrained 
fluid by Rosenfeld, Rambod and Gharib (1998). 
A further feature that can be observed in Figure 4 is that at 
the same Reynolds number, vortex rings survive longer as 
identifiable features when the reduced velocity is 
increased. 

THREE-DIMENSIONAL GLOBAL INSTABILITIES 
We have found two kinds of global instabilities for these 
flows.  At high values of reduced velocity, the dominant 
mode is a period-doubling instability that is associated 
with alternating tilting of the vortex rings blown out of the 
throat on successive pulses (Sherwin and Blackburn 
2005).  The mode has azimuthal wavenumber k=1, and 
becomes unstable as the associated Floquet multiplier 
leaves the unit circle along the negative real axis, i.e. 
µc=−1.. The alternation is caused by a coupled wake 
downwash effect: as one vortex ring in a pair tilts in one 
direction, its asymmetric wake flow drives the succeeding 
vortex ring to tilt in the opposite direction.  At lower 
values of reduced velocity, wavy vortex-core instabilities 
become dominant (Blackburn and Sherwin 2006).  A pair 
of modes, with azimuthal wavenumber k=3 and k=4 
respectively, compete for dominance over a narrow range 
of reduced velocity.  These are synchronous modes, i.e. 
µc=+1.  The marginal stability curves in (Ured, Re) control 
space for the two kinds of modes are shown in Figure 5.  
In both cases, there is an `optimal’ reduced velocity for 
which the critical Reynolds number is lowest: for the 
period-doubling mode, this occurs near Ured=3.25, while 
of the wavy modes it occurs near Ured=0.875. 

 
Figure 5: Marginal stability curves for the two kinds of 
global three-dimensional instabilities. 

Floquet modes 
The association between energy in the base flows and in 
the instability modes near the optimal reduced velocities is 
illustrated in Figure 6. In the panel (a) we see the 
instantaneous energy in the base flow at Ured=3.25, 
Re=370, while in (b) we see the logarithm of energy in the 
period-doubling Floquet mode.  Regions of concentrated 
kinetic energy in the base flow correspond to the locations 
of vortex rings.  The regions of concentrated energy in the 
Floquet mode are seen also to correspond to the locations 
of base flow vortex rings, which means that the rings 
supply the energy that drives the instability mode.  In 
panels (c) and (d) we see corresponding results for the k=3 
wavy mode at Ured=0.875, Re=325.  Again there is a clear 
association between the energy in the Floquet mode and 
vortex rings of the base flow. 
Note that the axial location of peak Floquet mode energies 
is typically many diameters downstream of the stenosis, 
and that Floquet mode energy initially increases in the 
downstream direction even though energy in the base 
flows dies away monotonically.  However, since the 
Floquet modes are ultimately dependent on energy in the 
base flows for growth, they also eventually reduce in 
energy along a streamwise traverse. 
At the ‘optimal’ reduced velocities for the two types of 
modes, the location of the kinetic energy of the Floquet 
modes reaches its most upstream location; for reduced 
velocities either higher or lower than these optima the 
Floquet mode energy moves further from the stenosis.  
Since the axial spacing of successive vortex rings 
increases with Ured, the ring-to-ring overlap of energy in 
the Floquet modes (evident in Figure 6, b and d) reduces, 
and there is less cooperative interaction between the 
instabilities that grow on successive vortex rings.  On the 
other hand, the vortex rings survive longer as reduced 
velocities increase (see Figure 4).  It appears that a 
competition between these two effects gives rise to the 
existence of an `optimal’ reduced velocity for each type of 
global Floquet mode. 

Nonlinear evolution 
Nonlinear evolution of the global instabilities is examined 
using DNS.  The axisymmetric base flow is projected from 
two to three spatial dimensions, and is seeded with a small 
amount of the global instability mode, to form a three-
dimensional initial condition, which is integrated forward 
in time. 
 



 
 

4  

(a)  

(b)  
 

(c)  

(d)  

Figure 6: Contours of instantaneous kinetic energy of base flows and logarithm of the energy in the corresponding Floquet 
mode. (a, b): Ured=3.25, Re=370; (c, d): Ured=0.875, Re=325. 

 

 
Figure 8: Illustration of the vortex-tilting instability after it has progressed to turbulent transition.  The two images show the 
flow one pulse period apart; note the almost exact reflection symmetry, which is a consequence of the period-doubling nature 
of this mode.  Blue: positive value of velocity gradient discrimininant, red/yellow: positive/negative values of axial vorticity. 
Ured=2.5, Re=400. 

 
Figure 9: Illustration of the k=3 wavy instability after it has progressed to turbulent transition.  Isosurfaces as for figure 8. 
Ured=1, Re=350. 

 
The resulting flows can take many hundreds of pulse 
cycles to reach asymptotic turbulent states. The typical 
evolution is first to an initial nonlinear saturation (which 
can be approximated using a simplified normal form 
model), and which will result in a weakly turbulent burst 
located near that of maximum Floquet mode energy. This 
is followed by a much slower nonlinear growth phase, in 
which the flow three-dimensional energy grows, and the 
axial location of the turbulent bursts moves upstream.  
An example of a state achieved after the initial nonlinear 
saturation, for a k=3 wavy mode, is seen in Figure 7. 
 

 
Figure 7: Visualisation of the k=3 wavy instability, after 
it reaches an initial nonlinear saturation.  The wavy 
vortex ring closest to the viewpoint undergoes a 
breakdown almost immediately.  Ured = 1, Re=350. 

Examples of the states achieved at the end of the slower 
nonlinear growth phase are shown in Figures 8 and 9.  
Figure 8 represents the final stage of evolution for the 
vortex-tilting mode, shown at two times, one pulse period 
apart.  Vortex rings are visualised using an isosurface 
(blue) drawn at a positive level of the discriminant of the 
velocity gradient tensor; inside such isosurfaces, the local 
nature of the flow is spiralling, either in or out 
(Blackburn, Mansour and Cantwell 1996).  Three-
dimensional distortion of the vortex rings is emphasised 
by drawing (red/yellow) isosurfaces of streamwise 
vorticity component (a quantity that is zero in an 
axisymmetric flow).  By comparing the first vortex ring 
structure in the parallel part of the tube downstream of 
the stenosis in the upper and lower panels of Figure 8, 
one can observe the alternate ring-tilting nature of the 
instability.  Further downstream the instability progresses 
to a breakdown event, and again, the approximate 
reflection symmetry of the upper and lower panels of 
Figure 8 is related to the period-doubling nature of the 
underlying linear instability.  Further downstream again, 
the flow relaminarises.  Note that the location of the 
turbulent breakdown (of order 5D downstream of the 
stenosis) is much closer to the stenosis than the location 
of the greatest Floquet mode energy, which, as seen in 
Figure 6(b), is of order 20D downstream of the stenosis.  
By this upstream movement, the instability is able to 
extract more energy from the base flow, since the vortex 
rings are most intense near where they form. 
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Figure 10: Roll-up of the separated shear layer of steady flow at Re=700, when perturbed by a small-amplitude, high-
frequency (Ured=0.3) oscillation of the inflow.  Isosurface of azimuthal vorticity. 

Figure 9 shows a corresponding result for the asymptotic 
state of a wavy instability.  The underlying three-fold 
symmetry of the underlying linear instability is still 
apparent in this image (especially around the first 
identifiable vortex ring downstream of the stenosis), 
although a high degree of distortion is also evident.  
Again, the location of the final turbulent breakdown is 
well upstream of the location of maximum Floquet mode 
energy (of order 10D downstream of the stenosis, see 
Figure 6d).  

AXISYMMETRIC CONVECTIVE INSTABILITIES 
As reduced velocity is increased, the vortex rings that 
lead each pulse structure trail extended shear layers, as 
explained above.  And while steady flows in this 
geometry become three-dimensionally unstable at 
Re=722 (Blackburn and Sherwin 2005), they always 
exhibit an initially axisymmetric shear layer emanating 
from a separation in the stenosis throat.  Both these types 
of extended shear layer are susceptive to a convective 
instability (i.e. one that will wash out of the domain if not 
perturbed).  In order to examine this mechanism, we have 
driven the flow by adding an very small, high-frequency 
periodic excitation on the inflow, the amplitude of which, 
0.001, is too small to be visually evident on the inflow. 

Convective instability of steady flow 
First we examine convective instability of steady flow for 
Reynolds numbers below the onset of the first global 
mode, which is a weak Coanda instability.  Figure 11 
illustrates the response of the flow to the perturbation by 
plotting the normalised energy in the perturbation flow as 
functions of reduced velocity of the perturbation, and of 
Reynolds number. Evidently the flow is most responsive 
to perturbation in a comparatively narrow band of 
reduced velocities centred around Ured=0.35, which leads 
to shear-layer rollups, as seen in Figure 10. 
 

 
Figure 11: Convective instability results for 
axisymmetric steady flows.  These show the domain 
integral of kinetic energy in the difference between the 
perturbed flow and the steady flow, normalised by the 
domain integral of energy in the corresponding steady 
flow, as functions of reduced velocity of the perturbation, 
and Reynolds number. 

Convective instability of pulsatile flow 
Now turning to pulsatile base flows, again we add a small 
high-frequency (low reduced velocity) perturbation to the 
inflow boundary condition of the axisymmetric flows and 
examine the response in terms of the relative energy in 
the perturbation flow.  Sample outcomes for three 
different reduced velocities of base flows are shown in 
Figure 12.  The pulsatile flows at lower reduced 
velocities (0.875 and 3.25, respectively the optima for the 
wavy and period-doubling instabilities) are comparatively 
unresponsive to perturbation, while the flow for Ured=10 
is much more responsive, over a spectrum of perturbation 
reduced velocity centred around Ured=0.2, about one-half 
the most responsive value for steady flow.  As for the 
steady flow case, the physical nature of the response is a 
convective-type shear layer oscillation, which is typically 
only active over the portion of the pulse cycle for which 
the shear layers are significant visual features of the flow. 
 

 
Figure 12: Convective instability results for 
axisymmetric pulsatile flows.  Peak domain-integral 
energy in the perturbation flow normalised by peak 
energy in the unperturbed flow when a high-frequency, 
low-level harmonic forcing at reduced velocity Ured(ε) is 
added to the inlet of three pulsatile flows. Reynolds 
numbers for the three base flows at Ured=0.875, 3.25 and 
10 were respectively 350, 400 and 600. 

The fact that receptiveness of the pulsatile flows to 
perturbation grows with the reduced velocity of the 
perturbed flow is related directly to the phenomenon 
discussed above in relation to the base flows that the 
shear layers that trail in the wake of the vortex rings 
become more and more extended as reduced velocity 
increases.  The comparatively weak and short-lived shear 
layers that may occur for smaller reduced velocities are 
not nearly as susceptible to convective instability. 

Interaction of global and convective instabilities 
It is possible for the convective instability of the pulsatile 
flow to interact with the global Floquet instability.  In 
order to examine this, the base flow chosen for Floquet 
analysis is the periodic state achieved with a high-
frequency component Ured(ε) chosen for peak response 
(as in figure 12) added to the regular pulsatile flow.  The 
stability analysis is carried through by linearising about 


