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ABSTRACT

Temperature control in the pharmaceutical, foodd an
mineral processing industries is complicated by the
inherent rheological complexity of the materials
involved. For example, food sterilization requires
uniform heating of typically non-Newtonian foodgtuf
within a narrow temperature range. Despite complex
rheology, the enhanced transport characteristics of
laminar flows exhibiting Lagrangian chaos can adsire
these requirements. Flow behaviour as such is aitedr

by a number of device design and operating parasjete
generating an optimisation problem over these
parameters. This problem is difficult as the parame
space may be large and the solution distributionmex
(fractal). By developing a novel spectral method,csa
resolve the asymptotic heat transfer rate overethtee
control parameter space, solving the optimization
problem. This method is applied to a case study of
Hershel-Bulkley fluid in the Rotated Arc Mixer, wheae
6-fold increase of heat transfer occurs at Peadlébrer
Pe=10°, which increases witRe.

INTRODUCTION

Ubiquitous to the food, pharmaceutical and mineral
processing industries are non-Newtonian materiath s
as emulsions, suspensions, slurries and pastesoDRhis
rheological complexity, transport and processinguwth
materials involves unique difficulties, especialfgr
delicate, high viscosity, yield stress and/or vedastic
materials. Furthermore, very often such processes o
materials are temperature sensitive; for examphed fo
sterilization demands uniform heating of shear and
temperature sensitive foodstuffs within a narrow
temperature range, and reaction of biological agent
demands precise temperature control to inhibit umed
side reaction due to the specific activation erexgi
involved. As conduction and natural convection alane
generally insufficient to achieve the required heat
transfer rate for uniform temperature distributiéerced
convection of the material is required to enhaneath
transport. However, traditional approaches suchhas
introduction of turbulence are often not feasilde rion-
Newtonian materials due to large energy costs, high
apparent viscosities, and the often shear-sensitere

of these materials. As heat transfer enhancememt vi
forced convection does not occur within plug flow
regions inherent to yield stress materials, a &rth
consideration involves ensuring material elementsiat
solely reside within such regions. With these
considerations in mind, a promising method to eohan
transport characteristics of non-Newtonian material
whilst addressing these requirements is chaotic

advection, whereby chaotic fluid particle pathsaifrom

a velocity field which may be non-turbulent. Lagy&am
chaos can be achieved even within Stokes flow and s
attractive for processing of non-Newtonian and shea
sensitive fluids.

While chaotic advection directly enhances transmdrt
passive entities (i.e. mixing of tracers), thesimqgiples
also apply to dissipative systems, e.g. the tramspio
diffusive particles or heat. In such cases the nomtn
mixing protocol differs from that of the non-difiue
system. Due to complex interaction between thetkine
advection and dynamic molecular transport processes
the fundamentals of chaotic advection-diffusion aot
fully understood, however the potential benefitsso€h
phenomena are large. Practically, what is the ntadei
of these benefits, and how can we exploit them?

Chaotic advection devices involve a nhumber of véeiab
design and operating parameters which must be
optimised for the process at hand. For pure mixing,
global chaos is desirable, whereas for other amfitios
(e.g. mixing and reaction), different protocols mig
preferred. For diffusive mixing, the relative tinsates of
advection and diffusion must be accounted for.llitat
very trivial flows, the optimum set of control paraters
cannot be determined analytically, so experimental
numerical investigation is required. The control
parameter space can be large, and results herggestu
the process efficiency has a complex (fractal)yidhigtion

with multiple local maxima, so high resolution gidb
exploration of this space is required to confidentl
identify the global optimum. Until recently, the
computational overhead of exploring the control
parameter space to sufficient resolution has been
prohibitive. This has hindered optimisation of emted
transport devices based upon chaotic advection.

Diffusive entities are active scalars, however veftgn
the fluid velocity field is independent of the smal
distribution, in which case they are consideredspas
and diffusive. In the case of heat transfer, this
corresponds to negligible effects of buoyancy, aef
tension and viscosity change with temperature,uanter
such conditions, a novel spectral method (beposite
spectral method, Lester et al, 2006a) which exploits the
symmetries of chaotic flows is applicable. This noet
can rapidly explore the control parameter spackigb
resolution in terms of the so-callettange eigenmodes
(Liu and Haller, 2003) of the advection-diffusion
equation (ADE) governing scalar transport. In theecof



periodic advective velocities the strange eigenmode
manifest as exponentially decaying periodic pattern
Eventually the slowest decaying strange eigenmode
dominates, and so the asymptotic transport chaistits

are governed by this eigenmode. As such, transport
characteristics may be inferred from the dominant
strange eigenmode dynamics rather than the fulitisol

of the scalar advection equation, facilitating dapi
exploration of the control parameter space.

Previously this method has been used (Lester et al,
2006b) to explore the control parameter space e
analogue of a chaotic mixing device, the Rotated Arc
Mixer (RAM) (Metcalfe et al, 2006), processing a
Newtonian fluid. As the 3D RAM is more industrially
relevant due to its simple design and ability togass
fluids in a continuous fashion, we consider thivice
here. The former study involves analysis of a teraibo
periodic 2D system, whilst this study considers a
spatially periodic steady 3D system. We consideat he
transfer of a shear-thinning yield stress fluidtia RAM,

as such materials are commonly encountered in the
process industries which are particularly probleenas

the plug flow regions inherent to yield stress dhii
present natural barriers to transport.

The aim of this work is to quantify and optimizeahe
transfer of a non-Newtonian fluid in the RAM with
respect to a suitable reference, and investigaaétgtive
characteristics of the chaotic advection diffusgystem
over the control parameter space. As temperature
homogenization is generally of primary concernHeat
sensitive fluids in industry, we only consider tfieed

flux mode of operation, which also captures the esam
physics as the mixing of diffusive species.

The geometry, control parameters and governing
equations are outlined in Section 2, and the swiuti
methods are reviewed in Section 3. Results and
conclusions are covered in Sections 4 and 5 reisphct

PROBLEM DEFINITION

A detailed description of the Rotated Arc Mixer
illustrated in Fig. 1 is given in Metcalfe et ab@b6), and
Fig. 2 depicts the RAM parameters. In brief, the RAM
consists of an inner cylinder of inner radiRsthrough
which the fluid flows, and tightly wrapped arourdstis

an outer cylinder which rotates at fixed angulaowity

Q. Regular apertures are cut into the inner cyliradearc
angleA and length, such that at the end of one aperture,
another is added immediately afterwards, offset by
angle®, resulting in a reoriented duct flow. Rotation of
the outer cylinder imparts transverse flow to thedfon
top of the axial flow along the inside of the inner
cylinder, and so each “cell” of the RAM corresporgiin

an aperture experiences a combination of thesé axih
transverse flows. From cell to cell, this basicwflds
simply reoriented by the offset angde If U denotes the
average axial velocity, then the ratio of timessale
between the axial to transverse velocities is @effias
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Figure 1: Rotated Arc Mixer schematic
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Figure 2: Rotated Arc Mixer parameters

The set of 3 flow control parametefsA, © determine
mixing conditions within the RAM, along with the wu
rheological, inertial, and surface parameters. Usifin
introduces a control parameter quantifying the sicade
between advection and diffusion, namely the Peclét
number Pe, which scales linearly with rotation rafe
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D, is thermal diffusivity and/,, Lo are the characteristic
transverse velocity and length scales.

Under conditions that temperature acts as passive
diffusive scalar, the momentum transport (Navierk8s)
equation is independent of the heat transport @&ibre
diffusion) equation. To solve the fluid velocityeki, we
invoke the “two and a half dimensional’ approxinoati

of Metcalfe et al (2006), which in essence trelgsflow
field in each cell as two-dimensional; consequettly
transition flows at cell boundaries are ignored.r Fo
Newtonian fluids, the relative thickness of thiansition
region is negligible foRe<10, and so the RAM velocity
field is also considered piecewise constart irere. The
extra “half dimension” above refers to the facttttize
transverse and axial flows are coupled via the rate
dependant non-Newtonian viscosity (Speetjens et al
2006). We need only determine the velocity fieldthe
first cell, v(r,8), and from the 2.5D model, the full RAM
velocity fieldu(r,8, 2) is mapped as

u(r,6,2)= v(r ,0-0>" H(z- kL)), 3)

where H is the Heaviside step function. For rational
values of ©/m, the fluid velocity u is z-periodic with
periodicityjL for some integej. Shear dependence of the
non-Newtonian rheology results in coupling betwéen
axial v,g(r,0) and transverse,fr,0) velocities, and the
steady, incompressible, non-buoyant flow is driv®n
both the rotating outer sleeve and a constant axial
pressure gradier,, such that the total pressupds of

the formp=P(r,§+C, z The cell velocityv is governed

by the continuity and Navier-Stokes equations



Olv=0, (4)
pvIiDOv=0[0(270)-0Op, (5)

where g =3 (0Ov + (Ov) ) is the rate of deformation

tensor, =+ 20 .0 the shear strain rate, apthe
fluid density. 7(p) is the fluid viscosity, given by the

Hershel-Bulkley (HB) model, with shear yield strags
fluid consistency, and flow indexh:

. Ty -,n-1
/7(1/):7“(}/ : (6)

The fluid temperaturg(x) over the RAM is governed by
the steady advection-diffusion equation (ADE)

uMg=D,0%p+ f(x), )
subject to the boundary conditions
Ar.00)=q(r,0)-(a(r,0)), )
0
- =9l&@ 9
aﬂr:R g( ’Z)’ ( )

wheref, g, respectively are the domain and boundary
source terms. As the ADE (7) is linear, we only sidar
initial conditions (8) with zero mean without losd
generality. Non-dimensionalisation of the ADE (7)
follows from the scalings r'=r/R, z'€2/U, u,=u,/U,
U g'=U,o/(QR), and substitution (upon dropping primes)
gives the non-dimensional heat transport equation
0 1 1

U, S =-u, M, 0+ 2 02,0+ = 10, 10)
where the axial convection ter@%(Pe U%) &*@oZ is
ignored under the assumption thatR and due to the
transverse velocity, transverse temperature grégien
dominate over axial gradients. In cases whereténia is
significant, with minor modification (extension ta
nonlinear eigenproblem) the method is still apgilea

METHOD

Maximisation of heat transfer in the RAM represemts
optimisation problem over the control parameter{get

©, B, Pe} for a given rheology. The set of design and
operating parameters for the RAM form a four-
dimensional space which govern the heat transfer
characteristics of the device. Following previous
investigations (Metcalfe et al 2006), we only cdesi
A=174 here, although it is understood different valoés

A may be preferential for HB rheology. Previous sadi
(Lester et al 2006a, 2006b) also indicate that when
optimised, transport enhancement increases signific
with Pe, and so only a moderate Peclét numiRe=(0°)

is considered here. As the cell velocitys independent

of the remaining parametel8 ©, the Navier-Stokes
equations need only be solved once over the refevan
control parameter space, and the RAM velocity field
can subsequently be constructed via (3) for anycehaf
Lando.

The 2D steady Navier-Stokes equations (4), (5) are
numerically solved using the commercial CFD package

CFX-1CP, for a HB fluid with yield stress, = 20 Pa,
consistencyx = 20 Pa $° flow indexn = 0.5 flowing in

a RAM cell of radiusR = 0.05 m, driving axial pressure
gradientC,= 2000 Pa M, window opening\ = 174, and
outer sleeve rotation raf@ = 1 Hz. A series of increasing
refined meshes is used to establish convergence and
accuracy of the solution. To ensure incompressjbis
satisfied exactly, the cell velocity is exported as

v=2zxOW +v, where Wis the transverse flow

streamfunction. This formulation allows computatibn
savings when analysing scalar transport.

Solutions of the ADE (equation 10) may be caseimmts

of strange eigenmodes, which in essence are tlguéio
modes of the periodic steady 3D system (the
dimensionless RAM velocity i8j-periodic inz). Liu and
Haller (2003) have established existence and
convergence of these solutions, providing matherahti
basis for decomposition of solutions of the ADEoirat
finite number of superimposed strange eigenmodes and
an arbitrarily small fast-decaying non-eigenmodente
As such, the dimensionless temperature field may be
represented as

Ax) = z:zoamk (x)e’ + O(e"’z), (11)

where ¢(x) is thek-th strange eigenmode (which&5—
periodic in2), A is the associated decay ratg,is the
weighting due to the initial conditiogy, and the final
term is the non-eigenmode contribution. With tirttee
slowest decaying eigenmode dominates and so the
asymptotic system dynamics may be approximated by
this eigenmode;

dx) - g.(x)=a, g (x)e™*, @2

and soA, governs the lengthscale of asymptotic decay.
Strange eigenmodes may also be complex, the pattern
which case has spatially quasiperiodic or subhartnon
eigenmodes, depending upon whetherdnis rationally
related to 274 For any initial condition givewg# 0, the
same eigenmode dominates, and in this study we
concentrate solely on the dominant strange eigeemod
only, under the assumption tha#0. Indeed, it is
generally true thatoy>ay for all k as the majority of
initial data is projected onto the most regulae. (lowest
total variance) eigenmode, which Liu and HallerQ20
show to be the dominant strange eigenmoden+0 or

the short time dynamics are of interest, it is 38aey to
compute the leading few strange eigenmodes. When
inhomogeneous boundary or source terms are present,
solution of the ADE involves forcing terms whichcdg

in terms of the strange eigenmodes

AAx)= Zf:o(a ot I F(u) dUJm (x)e*, @3

whereF(2) is the contribution of the source teriis),

g(x) to thek-th strange eigenmode. Strange eigenmodes
still govern decay of the system toward equilibrjtaha
rate again dictated by the dominant eigenmode dextay

Ao- Therefore the dominant strange eigenmode quesitifi
heat transfer in the RAM irrespective of initial ditions

and source terms, and the optimal operating camdit



universal. Henceforth boundary and domain sounceste
are ignored.

The composite spectral method (Lester et al 2006a,b
rapidly calculates the strange eigenmodes of tisécady
advection diffusion equation with time-periodic
advective velocity. With minor modification, thisetthod
can also be applied to the steady ADE (10) withialha
periodic advective velocity. In essence, the axial
coordinatez replaces time, and the formulations would
be identical if the axial velocityy, were plug flow.
Spectral expansion and truncation of (10) in tewhs
Laplacian eigenfunctions with appropriate boundary
conditions results in the system
B(z)dq)=(H(z)—1Dj(I), (1)
dz Pe
whereB(2) is the operator matrix for the axial velocity,
H(2) is the operator matrix for the transverse adeecti
term, andD is the constant operator matrix for the
diffusion term. AsB(2 and H(2) are both piecewise
constant in z, the system can be recast as

Cgf = B(z)'l(H(z) - Ple D](I) =A(z)o, (15)

and so analysis proceeds as in Lester et al (20064,

The aim of this study is to solve for the dimensiss
dominant strange eigenmodg(x) and associated decay
rate Ao of the heat transfer equation (10) over the
parameter spac®:{ 3, ©}=[- 77 7#x[0,x], at Pe=1C° and
quantify the heat transfer enhancement. To do s, w
compare heat transfer in the RAM against the refaren
case of heat transfer for simple pipe flow, spealfy
that for the same fluid flowing with the same meaadel
velocity U in a pipe of the same dimensions as the RAM.
As such, heat transfer enhancement in the RAM can be
correlated with the energy difference associateth wi
driving of the transverse flow and different axpaéssure
gradients. For the HB rheology (6), the radially
dependant axial velocity,(r) has an analytic form,
where an axial pressure gradient@=3940.37 Pa h
matches the axial mean flou/ to that of the RAM flow.
Ignoring axial diffusion, and assuming axisymmethg
heat transport equation for simple pipe flow is

0 1

uz(r )i . DTZ(D,

0z Pe
subject to boundary conditions (8), (9). As suclke th
asymptotic (longz) temperature decays as ep¢/Pe),
where & is the lowest magnitude eigenvalue of the
operator Df/uz(r). In comparison, the dominant

(16)

strange eigenmode in the RAM decays as &xg@,
hence the heat transfer enhancement fagtowhich
quantifies the relative lengthscales of asymptdtaat
transfer is

Re(A, )Pe
$o

In practical terms a simple pipe heat exchangeds¢e
be q times longer to achieve the same level of heat
transfer as the RAM. Once the relative energy
expenditure of the RAM and distribution gfover the

7

control parameter spad@ are known, we can quantify
the level and cost of optimised heat transfer RAM.
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Figure 3: RAM cell transverse velocity profile and
streamlines
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Figure 4: RAM cell axial velocity profile
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Figure 5: RAM cell shear strain rate

RESULTS

The CFD results for the 2.5D cell model are shown in
Fig. 3-5. The cell window is located at 3 o’clogithere
the highest transverse velocity occurs. The cefitree
and the centre of the circulation region (Fig. 8je
barriers to transport enhancement as the localr shéa

is zero; however the angular offs& between cells
means that fluid elements may experience shear in
subsequent cells. The results in Fig. 3-5 are #siskfor
construction of the full RAM velocity fieldu, as
parameterised by and £. Coupling of the axial and
transverse flows via the non-Newtonian viscosity is
apparent in Fig. 4, where the angular asymmetrseari



from shear thinning of the fluid near the aperture
window. A plug flow region occurs to the right it cell

r=0 axis, and so the angular offset between cells is
capable of moving fluid elements out of this plegion.
From the CFD results, the work per unit length resgli

to drive the outer sleeve of the RAM is 0.8927 W, m
which in addition to the axial pressure gradientegia
total of 1.2330 W ril. In comparison, a work per unit
length of 0.6644 W fhis required to drive the pipe flow,
so the RAM flow requires roughly double the energy
input. The shear thinning nature of the HB fluidams
that the transverse work done by the rotating csltmve
reduces the work required to axially drive thed|uand
this phenomenon is common as most pseudo-plastic
fluids are shear thinning.

For the base case of heat transfer under simpéeflup,
the dominant eigenfunction for the operaf/uz(l’)

is calculated by spectral analysis, in a similahfan to
the calculation of the RAM strange eigenmodes fer th
ADE (10), with the simplifications that the analyss
1D, and the axial fluid velocity,(r) is of analytic form.
We find the corresponding eigenvalue to f&7.5238,
which is the lengthscale (i) of asymptotic heat transfer
for the HB fluid under simple pipe flow, which caow
be compared to that of the RAM.

The dominant strange eigenmoggx,t) and associated
decay rate A, for fixed flux (Neumann) boundary
conditions is determined using the spectral methbd
Lester et al (2006a,b) over the parameter spREe,
©}=[- 77 74%[0.02, 500], atPe=1C°, with q calculated and
plotted in Fig. 6. This plot has around 1.7XXints
(where the dominant strange eigenmode and asstciate
decay rate are determined at each point), andata t
computation required 2.76x1Geconds on an Intel®
Xeon™ 3.00 GHz CPU. In contrast, using the same

processor, numerical solution of the ADdBly for a
single point inQ to similar accuracy (to verify results of
the spectral solution) using the CFD software CFX
10.0™ forz large enough to observig requires 2.3x10
seconds of computation. As such the spectral meihod
around 14,000 times faster in this instance; ithis
computational efficiency which facilitates detailed
exploration of the RAM control parameter space.

The heat transfer enhancement distribution herefis
similar complex (fractal) structure to that of avidenian
fluid in a 2D RAM with Neumann boundary conditions
(Lester et al 2006). Again, ridges of enhangdérnol’d
tongues) emanate from tif&0 axis at rational values of
@OITt Prior to collision of these tongues aroyfkb, the
strange eigenmodes are ordered, and rotationally
symmetric on the Arnol'd tongues, as depicted ig Fi
(@)-(c). The large gradients maintained in these
“programmed” structures result in enhanced trarspor
however, off the tongues (Fig. 7(d)) the rotational
symmetry is lost and heat transfer enhancement is
minimal (@=1.679). Enhancement also occurs in the case
of no reorientation®=0, Fig. 7(e)), but not to the same
degree as in the dominant Arnol'd tongues. A disord
transition occurs aroundB>5, resulting in greater
transport enhancement than the ordered solutiohs. T
eigenmodes at characteristic points wit@nare shown

in Fig. 8. There exist several regionsloally optimal
enhancement withi, all of which are large enough to
be considered parametrically robust. In contrasth®
ordered solutions (Fig. 7), the patterns associatitld
these local optima ((f), (g), (i) do not exhibiigence of
solid body conduction associated with the plug flow
region (Fig. 5) of the HB fluid. As such, appropeiatell
reorientation in the RAM flow is capable of trandpoy

fluid elements (and hence heat) out of this region.

Figure 6: Heat transfer enhancemenover {8, ©} space for Pe=10
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Figure 7: (a)-(c): Symmetric strange eigenmodes on Arnolithtees af3=0.2, (d), (e): non-symmetric eigenmodegiai.2
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Figure 8: Disordered strange eigenmodes over RAM parametee§pa(i) corresponds to optimum heat transfer.

The global optimum ove® occurs at point (i) (Fig. 8(i)),
where the heat transfer is enhanced more thand6-fol
(qma=6.427) over the reference case. The significant
enhancement means that based upon asymptotic
behaviour, a pipe over 6.4 times the length ofRAdM is
required to achieve the same transfer of heat.n&sgy
consumption of these devices scales with axialtterig
achieve the same heat exchange, the RAM actually
requires only 28.9% of the energy!

It is clear from Fig. 6 that detailed exploratioh @ is
necessary to find this optimum. As the physics eth
transfer with insulated boundary conditions is agals
that of the mixing of passive diffusive species, ex@ect
that protocols which produce good mixing (in the
absence of diffusion) also correspond to enhanesd h
transfer. We note that the region of enhanced p@ms
within Q corresponds roughly (but not exactly) to that of
good mixing of Newtonian fluids in the RAM (Metcalfe
et al 2006).

CONCLUSIONS

In this study we have applied a novel spectral oetth
(Lester et al 2006a) to solve the asymptotic dycarof
heat transfer within a Herschel-Bulkley fluid over a
subspace&) of the control parameter space of a chaotic
flow, the RAM flow. The heat transfer enhancemerg ha
been calculated against the reference of the saue f
flowing axially within a similar pipe. We find traport
rate distribution to be complex (fractal), necedsig
high resolution ofQ to identify the global optimum, and
study the global structure of transport in thistegs The
transport rate distribution over the control partme
space shares many qualities with that of previtudias
for Neumann boundary conditions (Lester et al, 2006

The optimised RAM has a greater than 6-fold
acceleration of heat transferRe=10°, and only requires
29% of the energy to achieve the same heat exchasge
the reference case. Based on previous results (Letsté
2006) and equation 17, this enhancement is antegipa
further increase significantly witRe. These results were
achieved with window openinfy=174, which is found to

be universally optimal for Newtonian fluids (Metfeaket
al 2006). Experimental investigation has shown fhis
not the case for non-Newtonian and specificallyldyie
stress fluids, hence further improvements are ptessi
with further computation.

Our results are an example of the ability of chaoti
advection to address difficult transport problems
involving non-Newtonian fluids and indicate prosisec
for design and construction of low energy transport
enhancement devices. In such applications optifisat
of the control parameters is of paramount impomanc
this is facilitated by the so-calledomposite spectral
method (Lester et al 2006a). This method can be applied
to industrially relevant problems with minimal
computational. In contrast, traditional methods tve
costly to explore to the required resolution.
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