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ABSTRACT 
In the production and processing of granular matter, 
mixing of solids plays an important role. Granular 
materials such as sand, polymeric particles and fertilizers 
are processed in different apparatus such as fluidized beds, 
rotary kilns and spouted beds. In the operation of these 
apparatus proper mixing is essential, as it helps to prevent 
formation of hot-spots, off-spec products and undesired 
agglomerates. DEM can be used to simulate these granular 
systems in detail and provide insight in mixing 
phenomena. Several methods to analyse and characterize 
mixing on basis of DEM data have been proposed in the 
past, but there is no general consensus on what method to 
use. 
In this paper we discuss various methods that are available 
to give quantitative information on the solids mixing state 
in granular systems based on DEM and TFM simulations. 
We apply the different methods to full 3D DEM 
simulations of a fluidized bed and to tracer particles in full 
2D TFM simulations. It is found that some of these 
methods are grid dependent, are not reproducible, are 
sensitive to macroscopic flow patters and/or are only able 
to calculate overall mixing indices, rather than indices for 
each direction. We compare some methods described in 
literature and in addition propose two new methods, which 
do not suffer from the disadvantages mentioned above.  
Simulations are performed for seven different operating 
pressures. It is found that mixing improves with operating 
pressure caused by increased porosity and increased 
granular temperature of the particulate phase. 

NOMENCLATURE 
A Amplitude (-) 
d Diameter (m) 
D Discrete Dirac delta function (-) 
Δt Time step (s) 
F Force (kg m s-2) 
g Gravitational acceleration (m s-2) 
m Mass (kg) 
M Mixing index (-) 
N Number of particles (-) 
p Pressure (N m-2) 
rij Distance between two particles (m) 
rp particle radius 
S2 Variance (-) 

pS
 

Sink term (kg m2 s-1) 

t Time (s) 
u Gas velocity (m s-1) 

 
v 

 
Solids velocity (m s-1) 

V Volume (m3) 
x X-coordinate (m) 
y Y-coordinate (m) 
z Z-coordinate (m) 

Greek letters 

β Momentum transfer coefficient (kg s-1 m-2) 
δ Dimensionless distance (-) 
ε Porosity (-) 
φ Particle concentration (-) 
γ Damping coefficient (s-1) 
μ Viscosity (kg m-1 s-1) 
ρ Density (kg m-3) 

fτ
 

Gas phase stress tensor (kg m2 s-1) 

θ Granular temperature (m2 s-2) 
ω Period (rad s-1) 

Subscripts 
diff different 
f fluid 
fit fitted 
g gas 
i,j,k,m particle numbers 
M mean 
mf minimum fluidization 
n normal 
sup superficial 
t tangential 

INTRODUCTION 
Gas fluidized beds are widely used in industry in various 
large-scale processes involving physical and/or chemical 
operations. The large specific surface area of the solids in 
fluidized beds is beneficial for various operations, such as 
gas-solid reactions, cooling and drying. In many cases it is 
important that all particles are well mixed so that all 
particles cool, react or dry in a similar manner, to prevent 
hot spot formation or agglomeration. 
Solids mixing of granular materials is researched widely. 
Since solids mixing is difficult to characterize 
experimentally, some groups use discrete element models 
(DEM) or discrete particle models (DPM) to investigate 
solids mixing behaviour.  McCarthy et al. (2000) 
succeeded to validate their simulations with experiments, 
which indicates that modelling is a promising approach to 
describe solids mixing in detail. 
In this work we investigate the capabilities of four 
different methods that can be used to calculate a mixing 
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index from DPM simulations and two-fluid model (TFM) 
simulations of fluidized beds. A mixing index (M) is used 
to quantify the state of mixedness of the system and is 
zero or one for respectively fully demixed and fully mixed 
conditions. The mixing index is also known as entropy of 
mixing (Schutyser et al., 2001), whereas Lu and Hsiau 
(2005) call it mixing degree, and Finnie et al. (2005), 
Asmar et al (2002) and Van Puyvelde (2006) call it 
mixing index. While most authors try to determine the 
mixing index from DEM simulations, they use different 
methods: Schutyser et al. (2001) calculated entropy based 
on entropy equations from molecular dynamics, whereas 
Mostoufi and Chaouki (2001) used the "colour" of a 
marked region (a spot) in the middle of the bed and 
measured the radius of the spot as a function of time. They 
were not able to calculate a mixing index. Lu and Hsiau 
(2005) and Rhodes et al. (2001) use the Lacey index as 
mixing index, which will be described later. 
Two-fluid models or Euler-Euler models use the kinetic 
theory of granular flow (KTGF) for the particulate phase. 
With these models mixing can be determined with stating 
two particulate phases as shown by Darelius et al. (2008). 
In this work we use tracer particles that move with the 
interpolated velocity of the particulate phase. By using 
tracer particles, the same methods used for analysing 
DPM results can be used to analyse mixing from TFM 
simulation data. 
We test two new methods to quantify mixing: one based 
on the colouring of the twelve nearest neighbours and a 
method based on the increasing distance of initially 
neighbouring particles. In this work we use the average 
height method and Lacey’s method, as well as the two 
newly proposed methods to investigate solids mixing in a 
fluidized bed containing mono-disperse polymeric 
particles at different operating pressures. In the first part 
of this paper the governing equations of the DPM and 
TFM are presented, followed by the various methods to 
characterize solids mixing. Subsequently the results of the 
different methods applied to the simulation data are 
discussed and conclusions are presented. 

MODEL DESCRIPTION 

Discrete particle model 
The discrete particle model (DPM) used in this work is an 
Euler-Lagrange model that was originally developed by 
Hoomans et al. (1996). In the DPM every particle is 
individually tracked accounting for particle-particle and 
particle-wall collisions. In the DPM the gas phase 
hydrodynamics is described by the Navier-Stokes 
equations: 
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where u is the gas velocity and fτ represents the gas 

phase stress tensor. The sink term pS , represents the drag 
force exerted on the particles: 
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The distribution function ( )iD x x−  is a discrete 
representation of a Dirac delta function that distributes the 
reaction force acting on the gas phase to the Eulerian grid 
via a volume-weighing technique. The inter-phase 
momentum transfer coefficient, β describes the drag of the 
gas-phase acting on the particles, which is modelled with 
the relation proposed by van der Hoef et al. (2005): 
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The motion of every individual particle i in the system is 
calculated from Newton’s second law: 

 ( ) pp pwi i
i i i i i i

s

dv Vm V p u v m g F F
dt

β
ε

= − ∇ + − + + +  (5) 

where the forces on the right hand side are, respectively 
due to pressure, drag, gravity, particle-particle interaction 
and particle-wall interaction. The contact forces are 
caused by collisions with other particles or confining 
walls. These collisions are described with a soft-sphere 
approach. This approach uses a linear spring/dash-pot 
model, wherein the velocities, positions and collision 
forces of the particles are calculated at every fixed time 
step via a first order time integration. The collision model 
takes restitution and friction effects into account. The 
associated collision coefficients were obtained 
experimentally via the method of Kharaz et al. (1999). For 
more details on the implementation of the soft-sphere 
model we refer to the work of van der Hoef et al. (2006). 

Two-fluid model 
In the two-fluid model (TFM) both the gas and solids 
phase are described as continuous inter-penetrating fluids. 
With the TFM, much larger simulate systems can be 
simulated, compared to the DPM. The equations of motion 
of the gas phase are the same as in the DPM (i.e. Eqs. (1) 
and (2)). In the TFM the interfacial momentum transfer is 
modelled by: 
 ( )pS u vβ= −  (6) 
The motion of the solids phase is described by: 
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For the equation of state of the solids phase the kinetic 
theory of granular flow (KTGF) is used. In addition to the 
continuity and the Navier-Stokes equations the granular 
temperature equation is solved for the particulate phase. 
The overall granular temperature is defined as: 

 1
3 p pC CΘ = ⋅  (9) 

where: 
 p pC c v= −  (10) 

Note that the particle velocity ( pc ) is decomposed in the 
local mean velocity ( v ) and the fluctuation velocity 
component ( pC ). 
The granular temperature is given by: 
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For a detailed description of all the used KTGF closure 
equations we refer to the work of Goldschmidt et al. 
(2001). 

Tracer particles 
To investigate mixing in the TFM one could define 
multiple solids phases with the same properties, but 
different colours. Drawbacks of this approach are grid 
dependency, initial colouring dependency and the inability 
to investigate sub grid mixing. An attractive alternative to 
the use of multiple solids phases is the use of tracer 
particles. As the motion of the solids phase is visualized 
by tracer particles, the same methods for characterizing 
mixing as used in the DPM can be applied. 
By definition tracer particles have no mass and follow the 
solids phase velocity exactly. The velocity of the tracer 
particles is interpolated from the solids phase velocity as 
follows:  
 ( )p m sv D x x v= −  (12) 
In this work we use volume-weighing (i.e. tri-linear 
interpolation) for the interpolation: 
 ,( ) ( )m i m i
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where δi is the dimensionless distance between the 
Eulerian position xi and the Lagrangian position of the 
marker xm,i in the xi direction. 

METHODS FOR CHARACTERIZING MIXING 
In this work we use four different methods to obtain 
mixing indices from DPM data with mono-disperse 
particles. Each of these methods will now briefly be 
introduced. 

Average height method 
The average height method is the simplest of the 
investigated methods and is based on the average height of 
a group of coloured particles. It is widely used for 
measuring segregation, for example by Hoomans et al. 
(2000). In the case of mono-disperse systems, half of the 
particles are given a colour, while all physical properties 
remain unchanged and are constant throughout the set of 
particles. Subsequently the average position of all 
particles is monitored. While the mixing behaviour can in 
principle be investigated in all three directions, here we 
will only explain mixing in the vertical direction. In the 
first step of the algorithm the vertical positions of all 
particles are sorted to determine the median height. 
Subsequently the lower half of the particles is coloured 
white, while the upper half is coloured black. For each 
time step the average height of the white particles can be 
calculated and normalized with the average height of all 
particles: 
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where whitez  is the normalized average vertical position of 
the white particles. Notice that initially 0.5whitez =  and 
when the system fully mixed it becomes 1.0. We now 
define the mixing index as follows: 
 2( 0.5)whiteM z= −  (17) 
which means that for 0M =  the system is fully demixed 
and for 1M =  the bed is fully mixed.  
This method can also be used to study lateral mixing. In 
those cases the left and right or front and back parts, are 
respectively coloured white and black. 

Lacey's method 
The Lacey index is based on statistical analysis and was 
developed by Lacey (1954). The variance 2S  for the 
concentration of the black particles in each cell is defined 
as follows: 

 2 2
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where N  is the number of cells in the bed containing 
particles and iφ   the concentration of black particles in 
cell i  and mφ  the average concentration of black particles 
in the bed. 

2
0S  and 2

RS  are defined as: 

 2
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and respectively represent the variance of the unmixed 
bed and fully mixed bed. n is the average number of 
particles per cell.  
 The mixing index can be calculated as follows: 
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Due to the use of grid cells the Lacey index is grid 
dependent. A coarse grid gives higher mixing indices, 
since in that case micro mixing effects are neglected. A 
fine grid gives lower mixing indices, if only few particles 
are present in a cell. If only one particle is present in a cell 
it is always fully unmixed. 
 

 
Figure 1: Illustration of the nearest neighbours method. 
For the highlighted particle (i) the twelve nearest 
neighbours are shown. Four of them are white and eight 
are coloured black. Particles that are located further away 
are coloured grey and are not taken into account for this 
particle.  

Nearest neighbours method 
Contrary to the average height method in which the 
overall average height of the particles is monitored, in the 
nearest neighbour method we evaluate the mixing in the 
vicinity of individual particles. Opposite to the Lacey 
index, it is grid independent. Initially we colour half of the 
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particles black, similar to what is done in the average 
height method. For each particle we determine the twelve 
nearest neighbouring particles. If these particles have the 
same colour as the particle under investigation it is 
unmixed, while if half of the nearest neighbours is 
coloured differently, it is fully mixed. This is expressed as 
follows: 

 
21

part

diff

Npart nb

n
M

N n
= ∑  (22) 

where ndiff is the number of nearest neighbours coloured 
differently and nnb the number of nearest neighbours. 
Figure 1 shows an example for one individual particle, for 
which four neighbouring particles have a different colour 
(i.e. white). The mixing index for particle i is 
2·4 / 12 0.67= . The overall mixing index is the average 
over all particles. 

  

 
Figure 2: Top: Distance between initially nearest 
neighbours averaged over all pairs (black line) and 
average distance between random particles (grey line). 
Bottom: corresponding mixing index determined with the 
neighbour distance method. 
 

 
Figure 3: Lacey index fitted with a damped exponential 
function.  
 

Neighbour distance method 
The fourth method used in this work is based on the 
distance between initial neighbours. At a given time the 
nearest neighbours is detected for each particle. Each 
particle and its nearest neighbour form a pair, and its 
centre to centre distance is monitored as time progresses. 
Initially the distance is in the order of one particle 
diameter and if the bed is fully mixed it can increase up to 
the bed dimensions.  
Figure 2 (top) shows the average distance between initial 
neighbours normalized with the particle diameter. Initially 
it is just above one particle diameter and after 1 second it 
has increased up to 60 times the particle diameter. It is not 
a smooth curve, because bubbles let the bed expand and 
collapse, causing the distance between particles to 
increase and decrease with time. This effect introduces 
noise in the mixing measurement. Therefore the distance 
is normalised with the distance of randomly selected 
particle pairs (grey line), resulting in a smooth mixing 
curve, unaffected by bed expansions as seen in Figure 2 
(bottom). Since initially the distance between neighbours 
is one particle diameter this is set to a mixing index of 0. 
The mixing index is expressed in the following equation: 

 part
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where ijr  is the distance between particle i  and its 

initially nearest neighbour j  and ikr  is the distance 
between particle i  and a randomly selected particle k .  
The method just described can be used to calculate the 
mixing index for each direction. Note that in that case, 
initially the distance between the partners in one direction 
can be less than a particle diameter. Some basic algebra 
shows that the average distance in one direction for two 
touching particles is 2

0 4 /pd d π= .  
The mixing index in the vertical direction for the 
neighbour distance method is thus defined by: 
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The mixing index for the horizontal direction x or y can be 
obtained by replacing subscript z by x or y respectively. 

Calculation of the mixing time 
The mixing index is a valuable quantity to investigate the 
solids mixing process in fluidized beds. To compare 
different simulations in a simple way, the mixing index 
curve is condensed in a single value. We choose to use the 
95% mixing time 95%t , where the mixing index reaches a 
value of 0.95. To prevent noise to influence the results, we 
fit a dampened exponential function to fit the mixing 
index curve as follows: 
 1 t

fitM Ae λ−= −  (25) 

where A and  λ, are the amplitude and the damping 
coefficient respectively. Each of these coefficients is 
obtained from the simulation data using a least squares 
method. The fit as shown in Figure 3 accurately follows 
the trend of the curve. From this fit we can calculate the 
mixing time at which the bed is 95% mixed, by solving 
eq. 16 for t: 
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 95%
1 1 0.95t ln

Aλ
− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (26) 

Unfortunately the average height method shows periodic 
overshoots. This effect is caused by the macroscopic 
circulation patterns of the particles in the bed, as can be 
seen in Figure 4, which shows the mixing index obtained 
for the average height method. Although 1M =  at 0.17 
seconds the bed is not fully mixed. At 0.31 seconds the 
colour pattern has been more or less inverted due to the 
bed circulation patterns, leading to an overshoot of  

1.6M = . After about 1.8 seconds the overshoots have 
dampened out and the bed is almost entirely mixed. 
Since the mixing index is oscillating around a value of 1, 
it is hard to determine a mixing time; therefore the curve 
is fitted with a damped harmonic oscillator: 
 1 ( )t

fitM Ae cos tλ ω−= −  (27) 

where  ω is the period of the oscillation. Now we can 
calculate the 95% mixing time using the fit without the 
oscillator. By removing the periodic part from the fitted 
equation we obtain an expression similar to Eq. (25) from 
which a 95% mixing time can straightforwardly be 
obtained. 

RESULTS 
2D TFM simulations of a pressurized bubbling fluidized 
bed at a constant excess velocity (i.e. superficial velocity 
minus the minimum fluidisation velocity) of 0.177 m/s 
were performed. The minimum fluidisation velocity was 
calculated with the Ergun equation. The mixing behaviour 
was analysed for operating pressures ranging from 1 bar to 
64 bar, similar to the DPM simulations performed earlier 
by Godlieb et al. (2007a,b). The bed has dimensions of 
D = 0.025 m and H = 0.15 m and is filled with polymeric 
particles up to a static bed height of H0 = 0.025 m. The 
particles have a diameter of dp = 1 mm and a density of 
ρs = 925 kg/m3. A computational stencil of 20 x 120 
computational cells and a time step of 2 .10-5 s was used. 
No-slip boundary conditions were used at the walls. 
Unfortunately, the Lacey index mixing time could not be 
calculated for 64 bar, since the bed expanded too much so 
that there were not sufficient particles per cell and the 
Lacey index did not converge to 1 anymore.  
The results of the vertical and horizontal mixing times are 
shown in Figure 5. It is found that the obtained trends 
show great similarities with the DPM results found by 
Godlieb et al. (2007a) (see Figure 6). Mixing times reduce 
with increasing operating pressure. This phenomenon is 
due to an increased number of bubbles, which yields more 
chaotic particle movement at elevated pressure, hence 
improving the mixing. A deviation from this trend is 
noticed at higher pressures (especially 64 bar). This can be 
explained by analysing snapshots of the particle positions 
(see Figures 7 and 8). 
At a pressure of 64 bar, the bed tends to expand to almost 
twice the height at 2 bar. This has a large influence on 
mixing times, since the particles need to travel longer 
distances. The snapshots show that it takes more time for 
the bottom marker points to reach the top of the bed and 
hence, to fully mix.  
To assess the mixing irrespective of the bed expansion, we 
also analysed the results for horizontal mixing. Since the 
horizontal pathway of the particles is bounded by the 
confining walls, bed expansion should have little effect on 
horizontal mixing. The results in Figure 5 (bottom) 

confirm this idea: the horizontal mixing times decrease at 
high pressure. 
 

Figure 4: Mixing index versus time, resulting from 
simulations (o), a fit of the data using Eq. (25) (⎯), and 
Eq. (27) (- - -). Images of the particles present in a slice in 
the centre of the bed are shown as well. 
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Figure 5: Mixing times versus operating pressure for 
vertical mixing (top) and horizontal mixing (bottom) from 
TFM simulation. AH is average height, L is Lacey, NN is 
nearest neighbours and ND is neighbour distance. 
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Figure 6: Mixing times vs. operating pressure for vertical 
mixing from DPM simulation (after Godlieb et al., 2007a). 
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Figure 7: Snapshots of vertical mixing at 2 bar. 

 
 Figure 8: Snapshots of mixing at 64 bar. 
 

 
Figure 9: Schematic representation of average solids 
motion in a fluidized bed. 

 
Figure 10: Horizontal mixing (1 bar). 

For vertical mixing, increasing pressure has the effect that 
i) the number of bubbles increases and chaotic movement 
in the bed enhances (micro) mixing, and ii) the bed 
expansion increases the particle travelling distances and 
hence decreases (macro) mixing. The first effect is 
dominant in the range of 1-8 bars, whereas the second 
effect is most important at high pressures. However, the 
results of the horizontal mixing do not show a smooth 
trend of decreasing mixing time at low pressures. After 
studying particle position snapshots, it is concluded that 
bed expansion has an important effect on horizontal 
mixing after all, especially at lower pressures. This can be 
explained as follows. The average solids motion takes the 
form of two counter-rotating vortices (see Figure 9). 
Horizontal motion is only dominant in the top and the 
bottom zones of the bed. It is in these zones that the 
mixing of coloured particles starts (see Figure 10). 
Because mixing mostly happens at the top and bottom of 
the bed, the (expanded) bed height can influence 
horizontal mixing as well.  
Extra simulations were performed to test the influence of 
bed height on the mixing times for vertical and horizontal 
mixing. For 2 and 32 bar, the initial bed height was 
reduced by 35%. Then again, mixing times were 
calculated. An average mixing time was determined by 
averaging the four mixing indices. 
The results from these simulations are listed in Tables 1 
and 2 and show that reducing the bed height has similar 
effects for 2 and 32 bar on the vertical mixing time. Both 
are reduced with ~11 %. For horizontal mixing however, 
results are different, i.e. the mixing time is less influenced 
than in vertical direction (only 6 % reduction) for 32 bar, 
but reduced significantly for 2 bar (16 %). This implies 
that i) horizontal mixing occurs partially via rotational 
movement of particles in the bed decreasing the mixing 
when a fluidized bed expands due to increasing pressure 
and ii) both direct horizontal motion and increase the 
mixing with increasing pressure, due to more chaotic 
movement in the bed and increasing space between the 
particles. 
For high pressures, the second effect is dominant and 
therefore, horizontal mixing times are not so much 
affected by bed height as for lower pressures. 
 
Table 1: Average vertical mixing times 

p (bar) H0 (m) Mixing time (s) Normalized 
mixing time (-) 

2 0.025 1.93 1.0 
2 0.016 1.69 0.88 

32 0.025 1.69 1.0 
32 0.016 1.49 0.89 

 
Table 2: Average horizontal mixing times 

p (bar) H0 (m) Mixing time (s) Normalized 
mixing time (-) 

2 0.025 2.21 1.0 
2 0.016 1.85 0.84 

32 0.025 1.52 1.0 
32 0.016 1.43 0.94 
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CONCLUSIONS 
The average height method for analysing particle mixing 
can provide insight in overall mixing behaviour in a 
fluidized bed. Although, this method is very useful for 
visually monitoring mixing behaviour, it has the 
disadvantage that there is a restricted number of diversity 
(depending on the amount of different colours used) of the 
particles. To determine a mixing index, it is only 
important to know whether a particle has colour 1 or 2 and 
this restricts the first three methods in quantifying mixing 
behaviour. The neighbour distance method is the only 
method in which the mixing index does not depend on 
colouring, which makes it more suitable to quantify 
mixing. 
The TFM simulations show useful trends and great 
similarity with the DPM simulations. The effects of 
increasing pressure on mixing behaviour are determined 
for vertical and horizontal mixing. For vertical mixing the 
following observations were made: 
1. With increasing pressure, the number of bubbles 

increases, leading to more chaotic particle movement 
in the bed, which enhances vertical (micro) mixing; 

2. Expansion of the bed increases particle travelling 
distances and decreases vertical (macro) mixing; 

For increasing pressure, the second effect is dominant. 
For horizontal mixing it was found that: 
1. Horizontal mixing occurs partially via rotational 

movement of particles in the bed. Mixing decreases 
when a fluidized bed expands due to increasing 
pressure; 

2. Direct horizontal motion and mixing of particles 
increase with increasing pressure, due to more 
chaotic movement in the bed and increasing space 
between the particles. 

For increasing pressures, the latter is dominant and 
therefore horizontal mixing times are not so much affected 
by bed height as for lower pressures. 
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