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ABSTRACT 

In this paper the numerical particulate flow model 

EUgran+Poly (Schellander et.al, 2012b), which is an 

Eulerian-Lagrangian and Eulerian-Eulerian numerical 

hybrid model for dilute and dense rapid granular flows, is 

modified to account for agglomeration. We introduce a 

novel approach referred as, "Bus-Stop Model", where 

agglomeration is modelled using Lagrangian tracer 

trajectories. To achieve this goal, two possible 

agglomeration models are presented: 1) a simple volume 

balance model, 2) a new implementation of the population 

balance model by Smoluchowski (Smoluchowski, 1917). 

The validation of the new implementation of the 

agglomeration model is done by comparison with the 

discretized population balance model, for a simple case. 

Furthermore the applicability of the model is shown for an 

industrial cyclone. The agglomeration model shows the 

mean particle diameter increases in the cyclone. The 

simulation results indicate improved quality and accuracy. 

NOMENCLATURE 

a characteristic length 

c particle class volume fraction 

C Cunningham slip factor 

d particle diameter 

g gas phase 

G volume agglomeration rate 

H sticking probability 

K agglomeration rate 

n number of particles 

p pressure or particle phase 

q fluid and solid phase 

s solid phase 

t time 

T temperature 

V volume 

 

f force per mass 

g gravity 

T gas stress tensor 

S solids stress tensor 

u  velocity 

 

α volume fraction 

β drag coefficient, collisional-agglomeration rate 

ε turbulent dissipation rate 

η collision probability 

 density 

τ particle relaxation time 

 dynamic viscosity 

ω relative particle velocity 

INTRODUCTION 

In chemical industry, pneumatic conveying and separation 

of solids, particles and dust by fluid based on centrifugal 

forces and agglomeration processes is very important. 

Since Smoluchowski (1917) presented his population 

balance model for particle agglomeration, agglomeration 

modelling has featured in granular simulations, especially 

in the chemical and energy industry. The population 

model with the main agglomeration rate based on 

collisions and sticking probabilities. 

EUGRAN+POLY 

The EUgran+Poly (Schellander et.al., 2012a) is a 

numerical model for the simulation of gas and fluid flows, 

including particle transport or particle separation. The 

main idea of EUgran+Poly is to use a hybrid model, which 

uses parts of the two state of the art models for particulate 

transport simulation. The two standard models are the 

Eulerian-Eulerian granular phase model and the Eulerian-

Lagrangian discrete phase model. Both models have their 

advantages and disadvantages, but with a combination of 

both models, a hybrid model can be created, which uses all 

the advantages. 

Eulerian-Eulerian granular phase 

The Eulerian-Eulerian granular phase model, describes the 

granular material, as a continuum, that is 
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The inter-particle collisions are included by kinetic theory 

closure for the particle stresses, which requires additional 

pseudo-thermal energy (granular temperature) to describe 

the energy fluctuations of the particles.  

Eulerian-Lagrangian discrete phase 

In this model, the forces on one particle are calculated and 

the particle is tracked through the simulation geometry. In 

this approach particle specific physical effects, like the 

Magnus force or rough wall handling for particle wall 
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collisions can be done. The force balance for one particle 

is defined with 

  addpmagnuspgpp
t

,ffguuu  



.   (2) 

A disadvantage of this model is, that for each particle the 

equation must be solved, and if there is a particle-particle 

interaction included, the search for the collision partners is 

extremely time consuming. If a huge amount of small 

particles (e.g. 1 µm particles) is present, this model is 

inadequate. 

Drag  model and force transfer between the models 

In Schellander et al. (2012b) the usage of the 

EUgran+Poly model for polydisperse granular materials is 

presented. Important for the hybrid model is, that both 

numerical models use the same drag model (Wen and Yu, 

1966) for the particles. Forces which are calculated in one 

approach must be transferred to the other approach, where 

they are included as additional forces addf . The transfer 

function is written as, 

addpssadds ,, ff  .     (3) 

Usage and calculation procedure 

The simulation is based on Eulerian granular approach, 

which uses additional forces coming from the Eulerian-

Lagrangian tracer trajectories. These tracer particles, are 

computed at fixed times, thus the Eulerian-Eulerian 

simulation is stopped and on the stationary velocity and 

volume fraction fields, the tracer trajectories are evaluated. 

It is important to use enough tracer particles to obtain a 

smooth force exchange field. Then the simulation is 

continued. 

 

 

Figure 1: Schematic diagram of EUgran+Poly, 

(Schellander et. al., 2012b) 

AGGLOMERATION 

In this section two models for particle agglomeration are 

presented: 1) the population balance model,  2) the volume 

balance model. If the particle size distribution for the 

agglomerated particle cluster and the de-agglomerated 

particles is known, a simple volume based model, with 

fixed volume agglomeration rates can be used for 

computing agglomeration. For a full simulation of 

agglomeration, the population balance model with 

computed agglomeration rates should be preferred. 

Agglomeration based on population balance 

Smoluchowski (1917) presented a population balance 

model, which describes the particle count of each particle 

class (i) at any time t. Agglomeration rates ),( jiK  and 

jiK ,  based on binary collisions between particles give 

the rate of agglomeration. These agglomeration rates are 

based on Brownian-, turbulent-, shear and kinematic 

collisions, which are discussed later in this section in 

detail. 

The equation for the i-th particle population is written as 
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with ),( tin  as particle count in class i at time t. For 

usage in computational fluid dynamic simulation the 

equation must be discretized yielding 
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In a simulation it is not possible to use an infinite number 

of particle classes, therefore a maximum number N of 

particle classes must be chosen. Recognizing that the 

highest particle class cannot lose any particles to higher 

classes, the equation system is finally written as 
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Agglomeration rates 

The agglomeration rates are calculated based on 

Brownian-, turbulent-, shear and kinematic collisions 

(Park et al., 2002). In detail, the agglomeration rate is 

written as (Anh, 2004) 

jijijiji HK ,,,,  ,      (7) 

where jiH ,  denotes the sticking probability, ji,  is the 

collision probability, describing the reduction of the 

collision rate by the surrounding fluid and ji,  is the 

collision-agglomeration rate for the particles i and j. The 

values for the sticking and hitting probability are between 

0 and 1, which is discussed by Anh (2004), and literature 
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cited therein, for simplicity in this paper both are chosen 

with 1. 

Brownian motion 

The model for describing the Brownian collision rate 

depends on the Knudsen number (Nowakowski and 

Sitarksi, 1981). In this paper, where the Knudsen number 

is much less than 1 (continuum regime) the following 

equation can be used, 
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where k  denotes the Boltzmann constant. 

Turbulence 

The turbulent agglomeration can be divided into two parts, 

the turbulent shear gradient part and the turbulent 

acceleration part, written as 

22

2

,
223

8
sa

ji

ji

dd



 













 ,    (9) 

with  as relative particle velocity. Saffman and Turner 

(1956) derived a collision kernel which combines the 

shear and acceleration mechanism. 
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i denotes the particle relaxation time and is defined as 

(Park et al., 2002) 
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with icC ,  as Cunningham slip correction factor, which is 

in our case close to 1. Kruis and Kuster (1997) presented 

modified derivations of a  and s , which are 

thoroughly reviewed and discussed by Park (2002). In the 

work of Kruis and Kusters (1997), the relative velocity 

based on acceleration and shear is represented with the 

following two equations: 
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with fv , iv  and jv  as root mean square velocities and 

the correlation of velocities 
2

f

ji

v

vv
, for which we use the 

relations proposed by Park et al. (2002). iSt  denotes the 

Stokes number, which is calculated with 

L
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with LT  as Lagrangian time scale (Park et al., 2002). 

  and   are dummy variables for  (Anh, 2004) 
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In Figure 2 a result for the different effects in the 

agglomeration rate of a particle 1Ref  ddi µm with 

particles  

 

Figure 2: Schematic diagram, showing the agglomeration 

rate amount of the different effects for a 1Ref d  µm 

particle. 

01.0jd  µm ... 10 mm are shown. It can be observed 

that for small particles, the Brownian agglomeration effect 

are nearly same as turbulent effects, with increasing 

diameter the impact compared to turbulent agglomeration 

decreases. Hence for particles greater 1 µm the Brownian 

agglomeration can be neglected. 
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Particle size distribution 

One important question is how to discretize the diameters 

for the particle classes to comply mass conservation. If 

two particles, i and j , agglomerate the resulting particle 

should have the volume of the two initial particles. Thus, 

the following discretization rule must be used for the i-th 

particle class diameter, 

min
3

1

didi          (17) 

where mind  denotes the minimum diameter in the particle 

size distribution. In industrial facilities particle size 

distributions are often present over several orders of 

magnitude therefore, such a discretization is unfeasible. In 

literature (Anh, 2004) several solutions for the 

discretization of the particle diameter are given, but they 

guarantee only that the error of mass conservation is less 

than approximately 5 to 10 %. In case of particle 

separation efficiency studies, an agglomeration model 

must accurately conserve mass. In the following section 

we present two different approaches solving this 

deficiency of the standard discretization of the 

Smoluchowski equation.  

Model application 

The first step is to implement the population balance 

directly. This can easily be realized in a Eulerian granular 

phase simulation with modelling for each particle diameter 

class an own granular phase. The problem is, that this is 

too time consuming, because for each phase the complete 

equation system, including coupling equations for phase-

to-phase interaction, must be solved. Another problem is, 

as mentioned before, that mass conservation must be 

guaranteed, which needs 1000 particle classes per 

diameter decade (17). A simple model which avoids this 

problem is the volume balance model in the following 

section. 

Volume balance model 

The first mass conserving model is based on the idea of 

reinterpretation of the Smoluchowski equation, using a 

balance equation system and can be simply implemented 

The idea is, that not only binary particle collisions are 

considered, but to model the mass transfer from collisions 

of particle classes j and v to class i. This can be realized 

without recognizing any diameter dependencies. A cluster 

of particles j can also combine with a cluster of v particles 

to a particle with diameter i. Another assumption for this 

model is that the final particle size distribution has to be 

known and the agglomeration rate vjiG ,,  is assumed to be 

constant for each particle collision pair j,v, adding volume 

to class i. The agglomeration rate is zero when the final 

particle size distribution is reached by a specific particle 

classes. The equation system can be written as, 
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where ic  denotes the volume fraction of particle class i  

and cellV  the regarded volume. This model is suitable to 

be used for modelling agglomeration in systems where the 

initial and the final particle size distributions are known. 

Neither special particle diameter distribution must be used, 

nor material parameters of the granular must be known. 

These are represented by the agglomeration rate vjiG ,, , 

which is modelled as a constant. However it is difficult to 

obtain reasonable values for vjiG ,, , since no explicit 

relations exist, though they may be obtained by 

experiments. 

Bus-Stop model 

If we discretize the population balance equation by 

considering Lagrangian trajectories for each particle class, 

it is possible to compute agglomeration with the 

Smoluchowski approach with mass conservation. Hence, 

agglomeration is considered as exchange of mass between 

trajectories i and j. Since we use the Smoluchowski 

equation the proposed equation for the agglomeration rates 

jiK ,  can be used directly, in contrast to the Volume 

balance model. 

 

The Bus-Stop model is sketched in Figure 3. It is divided 

in 3 subsequent steps. 

1.) Computation of tracer trajectories without 

agglomeration modelling. In each cell, which is hit by a 

trajectory, the particle velocity and particle number is 

stored. 

 

 

Figure 3: Schematic diagram of the Bus-Stop model. 
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2.) With this data in each cell the agglomeration rates for 

each possible pair of particle collisions is calculated. If in 

a cell a particle with diameter i is not present, then the 

agglomeration rate for all pairs with this class is zero. 

 

3.) The computation of tracer trajectories is repeated and 

the lost and gained amount of particles  can be determined 

since jiK ,  were computed in step 2. 

Since the smallest particle class can only lose mass, this 

class is calculated first. The lost particles are stored as 

(waiting) particles and can be gained by other trajectories. 

After that all other classes, in diameter increasing order 

are computed and with lost and gained particles. Finally, 

particles which are not gained were added to theire 

particle class. With this restrictive procedure, the mass 

balance is always fulfilled. 

 

The gain process in detail can be described as follows. If 

in one cell particles should be gained, then it is checked if 

free particles of the relevant class are waiting there and 

then these particles are collected. In detail, the volume (or 

mass) of the particles is added to the actual class. Hence, 

this does not change the diameter and also not the way of 

the trajectory.  

De-agglomeration 

One problem of the presented agglomeration rates is, that 

agglomeration only stops after all particles have 

agglomerated to one big particle. That could not be 

observed in real systems. Therefore it is reasonable to 

assume a threshold for the agglomeration rate based on the 

diameter, for example two particles would agglomerate to 

a particle with a diameter that is not possible. Hence, this 

agglomeration must be avoided. 

RESULTS 

Validation: Agglomeration model 

In a first step, the Bus-Stop model was implemented with 

Lagrangian discretization in MATLAB and FLUENT for a 

simple 2D case, to compare the results with the discretized 

Smoluchowski equation using (19). Particles with density 

of 2700p  kg/m^3 are freely falling in a pipe of 

length 50 m and diameter 0.1 m, at their terminal settling 

velocity. 20 particle classes were used, according to (19) 

with 51 d  µm and the threshold for the agglomeration 

is set to 94.92d  µm. The particle size distribution is 

chosen to be Gaussian 
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with 75.8Cd  µm and 1d  µm. With the given 

volume fraction of the particles ( 3.0p ) , 
1C  can be 

easily calculated. 

 

Figure 4, shows the comparison of the particle size 

distribution at the end of the 50 m pipe between the Bus-

Stop model implementations and the Smoluchowski 

population balance model. It can be seen, that both 

models, show nearly identical results. The comparison 

between the Bus-Stop model in MATLAB and FLUENT 

shows also a small difference. These differences are 

caused by setting the velocity of particles in the MATLAB 

model to a fixed value, whereby the particle velocity in 

FLUENT is computed based on the drag. It is found that 

the error is approximately 0.1%. However, with this 

validation, the usage of the Bus-Stop model is justified. 

 

 

Figure 4: Comparison of particle volume fraction between 

discretized Smoluchowski model and the Bus-Stop model 

(in MATLAB and FLUENT) 

 

Figure 5: Change of particle size distribution over height 

(○ 1m, □ 5m, ◇ 25 m and ▷ 50 m) in the vertical pipe. 

Comparison between Smoluchowski (....) and Bus-Stop 

model (○,□,◇ and ▷). 

Figure 5, shows the change from 1 m to 50 m in the pipe, 

for a different particle size distribution with 11 d  µm, 

75.1Cd µm and 2.0d µm. The Smoluchowski 

model simulation was stopped after 99% of mass reaches 

the end of the pipe. Therefore a small error in the mass 

conservation is present. Nevertheless, this results show on 

one hand that the Bus-Stop model can be used for the 

simulation of agglomeration with Lagrangian tracer 

trajectories and on the other hand, that the Bus-Stop model 

is provides the same results as the approved 

Smoluchowski model, hence it can be used for the 

simulation of centrifugal dust separators. 

Application: Cyclone 

A cyclone is used to test the agglomeration model at 

industrial scale application. Geometry and results for the 

cyclone without modelling agglomeration can be found in 

Schellander et. al (2012a,b). For the simulation the same 
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particle size distribution as mentioned before (eq. 19 and 

Figure 4) was used. 

 

 

Figure 6: Volume fraction of granular material in the 

cyclone. On the left side, the Eulerian-Eulerian granular 

phase and on the right side the coupled Lagrangian tracer 

trajectories can be seen. 

 

Figure 6 show the volume fraction in the granular phase 

and the particle amount in the Lagrangian trajectories. In 

both representations the same particle strand can be seen, 

this is one result of the coupling between Eulerian 

granular phase and the tracer trajectories in the 

EUgran+Poly model.  

 
Figure 7: Difference of particle size distribution at the 

inlet and the particle outlet of the cyclone.  

 

The particle size distribution change by agglomeration 

was very small, which can be seen in Figure 7. 

Nevertheless, the movement of smaller particles to bigger 

ones, by agglomeration is observed. The agglomeration 

model, increases the separation of the small particles, 

which is in standard simulation models often not the case. 

Figure 8 shows the separation efficiency of the cyclone for 

different models with respect to the particle diameter. The 

impact on the separation of small particles in the hybrid 

model EUgran+Poly depends on the model of the poly-

dispersed drag law, particle-particle collision model 

(Schellander et al. 2012b) and the agglomeration model. 

The agglomeration model increases the separation 

efficiency in the simulation by 1-4%. 

CONCLUSION 

The agglomeration model shows how the particle mean 

diameter increases in the cyclone. This provides a more 

precisely simulation of the separation efficiency, 

especially for small particles. The EUgran+Poly model in 

combination with the Bus-Stop agglomeration model, 

allows the simulation of granular transport and separation 

in an more accurate way than the volume balance model. 

 
Figure 8: Simulation results of separation efficiency of a 

cyclone separating limestone granular. The results are 

compared to measurements and the theoretical curve 

computed with Muschelknautz theory. 
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