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ABSTRACT

The notion that smooth, regular flows can generate complex
flow trajectories via chaotic advection has widespread implica-
tions for fluid transport. Due to the analogy with Hamiltonian
dynamics, almost everything is known regarding chaotic advec-
tion in 2D flow. Conversely, much less is known regarding 3D
flow, chiefly due to breakdown of the Hamiltonian analogy and
the explosion of possible Lagrangian topologies. The bestiary
of 3D dynamics is only beginning to be uncovered, and a quan-
titative framework is yet to be fully developed. Furthermore,
volume-preserving particle tracking methods in 3D which pre-
serve the conservative nature of the dynamical system are less
well-developed than their counterparts for 2D flow. We study
chaotic advection in a 3D potential flow, and develop a highly
efficient 3D volume-preserving method for the advection equa-
tion. The Lagrangian topology of this flow is elucidated, and
mechanisms governing global transport identified.

INTRODUCTION

Fluid transport plays a central role in the natural and applied
sciences, from oceanic plankton dynamics in geophysical flows
to biochemical reactions in microfluidic devices. Although the
majority of fluid-borne processes involve additional phenomena
such as diffusion, inertia, or chemical reaction, the underlying
passive transport plays a critical role in organizing material dis-
tributions which can profoundly influence the overall dynamics
of the coupled system [9]. As such, it is instructive to consider
the dynamics of passive transport as quantified by the advection
equation

ẋ = v(x, t), (1)

describing the evolution with time t of the spatial position x
of a fluid particle under the action of the fluid velocity field
v(x, t). The consideration of (1) from a dynamical systems per-
spective has generated significant and novel insights into trans-
port and mixing [14], specifically the notion that (1) is a non-
linear dynamical system capable of exhibiting chaotic dynam-
ics for flows with a minimum of three degrees of freedom (e.g.
2D transient or 3D steady flow). If the flow is incompressible,
∇ · v = 0, then the dynamical system (1) is conservative, with
physical space x forming the state space of the system.

In terms of fluid transport, a key consideration is whether the
flow v is mixing, or more formally whether a fluid particle tra-
jectory is globally ergodic, in that with time the trajectory vis-
its every point within a closed flow domain. Turbulent flows
exhibit ergodicity and rapid mixing, as evidenced by the rate
of turbulent dispersion in the presence of diffusion. In gen-
eral, if (1) exhibits chaotic dynamics, then the flow is a mix-
ing flow over some region of the Lagrangian topology. As such
behaviour is kinematic in origin, chaotic dynamics is possible
in flows which are smooth and regular (i.e. non-turbulent) in
the Eulerian frame. This phenomena, termed chaotic advection

or Lagrangian chaos has elucidated the mechanisms by which
low Reynolds number flows can achieve rapid, complete mixing
which is highly energy efficient and imparts minimal shear.

In the case of two-dimensional (2D) incompressible flows, the
advection equation (1) takes the form of a 1 degree-of-freedom
Hamiltonian system, where the streamfunction Ψ plays the role
of the Hamiltonian. As such, the theoretical framework, tools
and techniques of Hamiltonian mechanics can be directly ap-
plied to study transport in 2D flows, where the main results of
Hamiltonian chaos directly inform chaotic advection. Conse-
quently, chaotic advection in 2D is very well understood, which
has led to a wide variety of insights and applications regarding
e.g. geophysical flows, microfluidics, and industrial mixing.

Conversely, much less is known about Lagrangian chaos in
three-dimensional (3D) flows; this disparity of understanding
is due to a variety of factors [18]. First, the extra spatial di-
mension admits a much richer array of topological structures
and attendant dynamics. The set of topological complexity and
associated bifurcation structures are only beginning to be un-
picked, and there is much that is unknown regarding routes
to chaos in 3D systems. Second, although 3D steady systems
can be transformed into 2D unsteady Hamiltonian systems, this
Hamiltonian analogy breaks down at stagnation points of the
3D flow. These points play an important role in the genera-
tion of chaotic dynamics in 3D systems [1]. Thirdly, although
the Kolmogorov–Arnold–Moser (KAM) theorem which plays a
key role in describing the fate of invariant tori in 2D systems
does have a counterpart in 3D flows [3], this theory is not yet
fully developed.

In general, the theory behind 3D systems is less well-developed
[18], highlighting the need for fundamental research into 3D
systems both in terms of theoretical framework and the dynam-
ics of specific systems. Although this gap is being bridged by
recent works, there are many unanswered questions regarding
the nature of chaotic advection and transport in 3D flows, rep-
resenting a rich field of scientific enquiry.

Whilst the study of chaotic advection in 3D inviscid flows,
Stokes and laminar flows has received significant attention,
no studies have considered chaotic advection in 3D potential
flows, and only a handful consider 2D potential flows [10,
11]. There exist a wide range of porous media applications
(e.g. geothermal energy [8], carbon sequestration, groundwater
transport [17]) in which chaotic advection in 3D potential flows
plays a pivotal role, and so understanding the mechanisms of
chaotic advection in these systems represents a problem of con-
siderable interest.

As steady potential flows are irrotational, closed fluid orbits are
prohibited and so homoclinic/heteroclinic connections (which
are considered the “fingerprint of chaos”) between stable and
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unstable manifolds cannot form. Similarly, although Darcy
flows admit non-zero vorticity ω ≡ ∇× v via the inhomoge-
neous permeability field, the local helicity h≡ ω ·v of the flow
(a measure of spatial complexity) is identically zero. Spos-
ito [16] shows that under this identity, Darcy flow streamlines
are confined to non-intersecting Lamb surfaces which are topo-
logically flat 2D manifolds. By the Poincaré-Bendixson the-
orem, continuous systems require a minimum of 3 degrees of
freedom to exhibit chaotic dynamics, and so steady potential
and Darcy flows do not produce Lagrangian chaos. Hence time-
dependent flow is a necessary condition for chaotic advection in
potential and Darcy flow.

In this paper we study chaotic advection in a transient 3D po-
tential flow in order to identify mechanisms controlling trans-
port in such flows. We consider a dipole flow constrained to
the unit sphere Ω, where transient flow may be invoked by tran-
sient forcing of the dipole. The simplest transient flow protocol
involves punctuated reorientation of the dipole at integer mul-
tiples of dimensionless time τ by a fixed angle Θ, and so the
transient flow is termed a 3D reoriented potential mixing (3D
RPM) flow. This reorientation protocol is closely related to the
corresponding 2D analogue [7], which exhibits global chaos for
certain flow parameter values τ, Θ.

The Lagrangian dynamics of the 3D RPM flow is studied via
both theoretical analysis and numerical integration of the ad-
vection equation (1), where particle tracking forms the kernel
of a range of tools to investigate the Lagrangian topology and
attendant dynamics, coherent structures, periodic points and as-
sociated invariant manifolds. As such, it is necessary to use
explicitly volume-preserving numerical integrators. Such meth-
ods strictly preserve the conservative structure of (1), and elim-
inate spurious particle attractors and repellers over arbitrarily
long integration times.

The development of 3D volume-preserving (VP) numerical in-
tegrators is significantly less advanced than that for 2D, where
2D methods draw upon the wide class of symplectic integra-
tion methods, which is not possible in 3D. We consider appro-
priate 3D VP integrators for the 3D RPM flow, and develop a
highly efficient VP numerical method based upon a numerical
map generated by a priori integration of (1). Numerical exper-
iments suggest this method is around 5,000 times faster than
direct numerical integration, and this method is used to iden-
tify the Lagrangian topology of the flow and the mechanisms
governing global transport.

FLOW GEOMETRY AND DYNAMICS

Steady Three-Dimensional Dipole Flow

In this study we consider a 3D RPM flow similar to the 2D tran-
sient potential flow considered by Lester et al [7]. This transient
flow is composed from a steady 3D dipole flow ṽ constrained
within the unit sphere Ω and driven by a singular source/sink
at (x,y,z) = (0,0,±1). As ṽ = ∇Φ is axisymmetric about the
z-axis, the cylindrical coordinates (ρ,φ,z) form a natural coor-
dinate system to describe the flow, and the flow potential Φ is
governed by

∇
2
Φ = 0, and n ·∇Φ

∣∣
∂Ω

= δ(z−1)−δ(z+1), (2)

where n is the outward unit vector normal to the spherical
boundary ∂Ω, and δ is the Dirac delta function. As such, the
flow normal to the spherical boundary is zero everywhere ex-
cept for the singularities at z = ±1, and the tangential flow is
defined by a stress-free (slip) boundary condition. To solve the
potential flow we use the method of images [4] for the Neumann

(a) (b)

(c) (d)

Figure 1: (a) Contours of the axisymmetric potential function
Φ. (b) Level surfaces of the axisymmetric stream function
Ψ. (c) Reorientation protocol for Θ = 2π/3. (d) Superposed
streamfunction contours under rotation Θ = 2π/3.

boundary problem (2), which yields an analytic solution for Φ,

Φ(ρ,z) =
1

2π

(
1√

ρ2 +(1+ z)2
− 1√

ρ2 +(1− z−)2

)

+
1

4π
log

(
1− z+

√
ρ2 +(1− z)2

1+ z+
√

ρ2 +(1+ z)2

)
,

(3)

the contours of which are illustrated in Figure 1a. The steady
flow ṽ may also be described in terms of the axisymmetric
Stokes streamfunction Ψ,

Ψ(ρ,z) =
1− z2−ρ2

4π

(
1√

(1− z)2 +ρ2
+

1√
(1+ z)2 +ρ2

)
,

(4)
where ṽ = ∇× (Ψ/ρ)êφ. To close the flow domain Ω, we
impose periodic boundary conditions at z = ±1, under the
constraint that fluid particles which exit at the sink z = −1
are instantaneously re-injected at the source z = 1, with the
streamfunction Ψ and azimuthal angle φ are preserved upon
re-injection. Although this re-injection protocol is somewhat
artificial, it generates the clearest exposition of the Lagrangian
dynamics, which form a basis for consideration of more com-
plex re-injection protocols.

Hence fluid streamlines reside on stream-surfaces of constant
Ψ, which in conjunction with the azimuthal angle φ form a pair
of invariants of the steady flow ṽ, i.e. ∇G · ṽ = 0 for G = Ψ,φ.
As such, streamlines of ṽ are given by the orthogonal intersec-
tions (∇Ψ ·∇φ = 0) of level surfaces of Ψ with level surfaces
of φ, as illustrated in Figure 1b. Although the confinement of
streamlines to invariant surfaces is trivial for the steady flow
ṽ, these concepts also extend to the control of transport in the
Lagrangian frame for transient flows.

The flow (in the dynamical systems sense) of (1) for v = ṽ is de-
noted ϒ̃t , where ϒ̃0(X) = X, and d

dt ϒ̃t(X) = ṽ
(
ϒ̃t(X)

)
, where

X are the Lagrangian coordinates. Symmetries of the flow ϒ̃t
govern the Lagrangian topology of the 3D RPM flow and im-
pose constraints upon scalar transport. ϒ̃ possesses two basic
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symmetries: axisymmetry about the z-axis and a reflection re-
versal symmetry in the xy-plane. Algebraically these can be
written respectively as

ϒ̃t = Rz
θ
ϒ̃tRz
−θ

, (5)

ϒ̃t = Sxyϒ̃
−1
t S−1

xy , (6)

respectively, where Rξ

θ
denotes rotation through angle θ about

the ξ-axis and Sξζ denotes reflection in the ξζ-plane. The sym-
metries (5), (6) play an important role in controlling the trans-
port dynamics of the transient flow.

Transient Three-Dimensional Flow

To program the transient 3D RPM flow from the steady flow
ṽ, we consider a reorientation protocol which involves reori-
entation of ṽ by fixed angle Θ through the xz equatorial plane
normal to the y-axis, as per Fig. 1c. The instantaneous reori-
entation occurs at integer multiples of fixed dimensionless time
t ′ = τ, where dimensionless time t ′ = t/tc and tc is the empty-
ing time tc of Ω under the steady flow ṽ (henceforth primes are
dropped). The transient flow is given by the piecewise steady
approximation

ṽ(x, t)≈ ṽ
(

Ry
b t

τ
cΘx, t

)
, (7)

where the floor function bxc denotes the integer part of x. The
approximation is made in (7) that the internal flow field within
Ω reorients instantaneously, which is justified in cases where the
Strouhal number St = Re/τ is small. As the Reynolds number
Re for flow within porous media is negligible, the piecewise
steady velocity approximation (7) is valid everywhere except in
singular limit τ→ 0.

VOLUME PRESERVING METHODS FOR THE ADVECTION
EQUATION

3D Volume Preserving Integration

The study of fluid transport in incompressible flow relates to the
propagation of (1) under the constraint ∇ ·v = 0, where numer-
ical methods to solve (1) form the kernel of a range of tools and
techniques to understand and visualize transport. As the incom-
pressibility constraint renders this dynamical system conserva-
tive, such methods must explicitly enforce this constraint over
extremely long time-periods, to avoid spurious artifacts such as
particle repellers and attractors. Hence whilst numerical solu-
tion of (1) shall involve some level of approximation of the gov-
erning set of ODEs, the VP constraint must be enforced exactly.

The volume-preserving nature of (1) for incompressible flow
means that the fluid deformation tensor

F =
∫

X
∇v(X, t)dt, (8)

must satisfy detF = 1, and so volume-preserving methods must
also satisfy this condition in a numerical sense.

For 2D incompressible flow, the advection equation takes the
form of a 1 degree-of-freedom Hamiltonian system, where the
streamfunction ψ plays the role of the Hamiltonian H. In gen-
eral, all d degree-of-freedom Hamiltonian systems are symplec-
tic, such that the Jacobian matrix J is a 2d×2d symplectic ma-
trix;

JT MJ = M, (9)

where M is a nonsingular, skew-symmetric matrix, such as the
block matrix

M =

(
0 Id
−Id 0

)
(10)

with Id the d× d identity matrix. Hence for 2D incompress-
ible flow, numerical methods to solve (1) must be both area-
preserving and symplectic to preserve the Hamiltonian struc-
ture, which corresponds to enforcing fluid particles exactly fol-
low their streamlines and the streamfunction ψ is conserved.
The area-preserving and symplectic conditions are one and the
same in 2D, and are satisfied if the Jacobian JN of the numeri-
cal method which propagates the particle position x to x′ must
satisfy

detJN = det
(

∂x′i
∂x j

)
= 1, (11)

which is equivalent to the condition detF = 1 for the fluid de-
formation tensor.

There exist a wide class of numerical methods which can be
rendered symplectic, ranging from common integration tech-
niques such as Crank-Nicholson, Runge-Kutta and various ad-
joint compositional and splitting methods, through to varia-
tional integrators and generating function integrators which are
inherently symplectic. In general, VP flows are not symplectic
if the number of spatial dimensions is odd, and embedding in
a higher-dimensional symplectic domain with even dimensions
does not strictly ensure the original system is VP. As such, the
development of VP methods in 3D and odd-dimensional do-
mains in general represents a distinct field from symplectic in-
tegration methods.

The general field of so-called geometric integrators is concerned
with the development of methods which preserve an inherent
property (i.e. symmetry, energy, measure) of an ODE system,
under which VP forms one such example. This approach is em-
ployed by Finn and Chacón [5] to n-dimensional VP methods
for divergence-free velocity fields given on a discrete grid of
points. Explicitly, as the 3D velocity field v is incompressible,
it may be expressed in terms of the velocity potential v=∇×A,
where the potential A may be decomposed in cartesian coordi-
nates as

∇×A = ∇Ax× êx +∇Ay× êy +∇Az× êz. (12)

As such, a VP scheme N(h) to propagate (1) forward by
timestep h can be constructed via operator splitting as

N(h) = Nx(h)+Ny(h)+Nz(h), (13)

where each Nζ represents a 2D symplectic method, and the
scheme may be extended to second-order accuracy via the time-
symmetric decomposition

N(h) = Nx(h/2)+Ny(h/2)+Nz(h)+Ny(h/2)+Nx(h/2).
(14)

This method can be applied to discrete divergence-free velocity
data given on a tensor product grid to yield a continuous inte-
gration method which is explicitly volume-preserving.

Volume-Preserving Integration in Curvilinear Coordinates

To solve the advection equation (1) for the 3D RPM flow (7), we
employ this method in the cylindrical coordinates (ρ,θ,z). Finn
and Chacón present an extension of their basic method to yield
an explicitly VP integration method in arbitrary curvilinear co-
ordinates ξi. Here the velocity field is expressed in contravariant
form as

v = v1
∇ξ

2×∇ξ
3 + v2

∇ξ
3×∇ξ

1 + v3
∇ξ

1×∇ξ
3, (15)

where
vi = Jξv ·ξi, (16)
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and Jξ is the Jacobian of the coordinate transform, Jξ =

|det(∂ξi/∂xk)|. In this coordinate system the equations of mo-
tion become

dξi

dt
= v ·∇ξ

i =
vi

Jξ

, (17)

and so for the vector potential in contravariant components A =
∑i Ai∇ξi, the velocity is given as the formal curl of A:

v = ε
i jk ∂Ak

∂ξ j . (18)

As such, the advection equation in curvilinear coordinates (17)
is of the same form as that for cartesian coordinates (1) with
the exception of the Jacobian factor 1/Jξ. This system may be
re-cast in terms of the integration variable λ where

dξi

dλ
= vi,

dt
dλ

=
1
J
, (19)

such that fluid particles follow the same orbits, and λ represents
a locally stretched time coordinate.

VOLUME-PRESERVING INTEGRATION OF THE 3D RPM
FLOW

Volume-Preserving Integration of the 3D RPM Flow

For the cylindrical coordinate system, the Jacobian Jξ = ρ, and
so for the steady flow ṽ with zero swirl (vθ = 0), the set of
advection equations including the stretched time coordinate λ

are

dρ

dλ
= ρṽρ(ρ,z),

dθ

dλ
= 0,

dz
dλ

= ρṽz(ρ,z),
dt
dλ

= ρ. (20)

Hence volume-preserving integration of the 3D RPM flow (7)
corresponds to symplectic integration of (20) where only one of
the numerical integration steps in (13) is required. In general,
the method described is capable of explicit volume-preserving
integration of steady and unsteady flows in general curvilinear
coordinates.

In general, integration of the advection equation for 2D area-
preserving flows may be performed analytically via the change
of coordinates

ṽ(x1,x2) 7→ ṽ(Ψ,ζ), (21)

where ζ is a coordinate orthogonal to Ψ. As the streamfunction
Ψ is preserved, the 1D advection equation

dζ

dt
= ṽ(Ψ,ζ), (22)

may be integrated analytically to directly yield an expression
for advection time as a function of ζ. Whilst this is possible for
the 2D dipole flow [7], the quartic form of the streamfunction
Ψ prevents this for the 3D dipole (4), and so numerical methods
are required to directly integrate (20).

We consider two symplectic methods for the integration of (20);
a fourth-order Gauss-Legendre (GL) method and a fourth-order
Runge-Kutta (RK) method across a range of step sizes. The im-
plicit Gauss-Legendre method is solved using Picard iteration to
machine precision ( 10−16). The global error in the streamfunc-
tion Ψ from the initial value is order 10−15 for 2000 integration
steps of size τ = 0.1. The GL method is significantly more ac-
curate than RK, with global errors in Ψ of order machine preci-
sion obtained for time steps ∆t = 10−4, which appear to plateau
after 1000 iterations. As such, the fourth-order GL method
accurately preserves the symplectic structure of (20).

Volume-Preserving Mapping of the 3D RPM Flow

Although the GL method is relatively efficient, the large num-
ber of particle trajectories and long integration times involved
in study of the Lagrangian topology render particle tracking a
significant computational overhead. Although it is not possible
to place the advection equation (1) in the 1D form (22), it is
possible to numerically solve the equivalent ODE system (20)
a priori to high resolution throughout the domain Ω to form a
volume-preserving numerical map of the flow ϒ̃t .

Due to the underlying symmetries (5), (6) of the steady flow
field ṽ, it is only necessary to solve (20) over the quarter disc
Ω1 : z 6 0,ρ > 0, with Ψ ∈ [0,π/4]. To construct the set of
numerical solutions to (20), we choose a set of initial conditions
Ψi = iπ/4000 for i = 0,1, . . . ,1000 along the z = 0 axis, and the
GL method with timestep 10−5 is used to integrate the particle
trajectories to the sink at z =−1. The coordinate system (Ψ,z)
is used define the position of a particle, where the integration
points for each value of Ψi from z = 0 to the dipole sink at
z =−1 are interpolated in z to generate the continuous function
z = ZN,i(Ψi, t ′), where the advection time is re-scaled as t ′ =
t/T (Ψi), where Ti is total travel time to the dipole sink at z =
−1, hence t ′ ∈ [0,1].

The continuous numerical map ZN(Ψ, t) over Ψ × t ′ =
[0,π/4]× [0,1] is then constructed by interpolation over the set
of functions ZN,i(Ψi, t ′) in Ψ. Mapping of ZN via the reflec-
tion symmetry (6) expands the domain to z ∈ [−1,1], t/T (Ψ) ∈
[−1,1] where negative values of t correspond to positive val-
ues of z. Whilst advection via the numerical map ZN introduces
numerical errors via interpolation and integration, ZN explicitly
preserves the streamfunction Ψ and so is symplectic.

To advect fluid particles forward in space, it is also necessary
to construct the inverse numerical map t = TN(Ψ,z) which may
be implemented via a Newton-Raphson method for Zn(Ψ, t) for
fixed Ψ. Similarly, this map is symplectic in that TN contains
numerical errors in z but explicitly preserves Ψ. As such, ad-
vection of a fluid particle at (zn,Ψ) under the steady flow ṽ over
time period τ is mapped to (zn+1,Ψ), as

zn+1 = ZN(tn+1,Ψ), (23)

tn+1 =

(
TN(zn,Ψ)+ t +

T (Ψ)

2
mod T (Ψ)

)
+

T (Ψ)

2
, (24)

where the mod operator encodes re-injection of fluid particles
whilst preserving Ψ, φ.

The 2D symplectic map ZN forms the basis of a 3D volume-
preserving map for the piecewise steady velocity field v (7), by
composition with the reorientation operator Ry

Θ
. To simplify

visualization, computations are carried out in a frame of refer-
ence moving with the 3D dipole, such that the velocity field v
is steady, and fluid particles are reoriented by Ry

−Θ
at integer

multiples of the reorientation time τ as follows.

If we consider a fluid particle within the 3D domain Ω at posi-
tion x described by the coordinate system x = (Ψ,φ,z), then the
numerical steps (23), (24) form a numerical approximation ϒ̃N
to the map ϒ̃τ over one reorientation period which preserves the
invariants Ψ, φ. Hence propagation of a fluid particle at position
xn = x(nτ) in the dipole frame of reference at integer multiples
of τ under v is given by

xn+1 = ϒNxn ≡ Ry
−Θ

ϒ̃N,τxn, (25)

As the map ϒN is based upon the 3D volume-preserving
scheme (20) in curvilinear coordinates, this map is also volume-
preserving and so may be used to rapidly propagate fluid parti-
cles. Numerical experiments suggest the map ϒN,τ is around
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(c) (d)

Figure 2: (a)-(c) Nested 2D surfaces within the 3D Poincaré
section of the 3D RPM flow for Θ = 2π/3 and τ = 0.1, where
(a) G = 0, (b) G = 0.5, (c) G = 1. The red/blue dots depicts the
dipole source/sink, and the period-1 line is shown in orange. (d)
Projection in the xz-plane of the superposed streamfunction Ψ′

for Θ = 2π/3 in the limit τ→ 0.

5,000 times faster than direct numerical integration of (20) via
the symplectic GL method.

LAGRANGIAN TOPOLOGY OF THE 3D RPM FLOW

Poincaré Sections

A first step to understanding chaotic advection and transport in
the 3D RPM flow is to elucidate the Lagrangian topology which
provides the geometric structure of the advection dynamics. We
use the Poincaré map ϒ to represent the long-time dynamics of
(1) as a 3D object in Ω, termed the Poincaré section, where ϒ is
given as

ϒ = Ry
−Θ

ϒ̃τ. (26)

The Poincaré section can be calculated by recording particle po-
sitions after each iteration under ϒN . As the Lagrangian topol-
ogy is invariant under the counter-rotation Ry

−Θ
, the dynamics of

ϒN are equivalent to the continuous map in the laboratory frame.
By posing the 3D RPM velocity field (7) in the dipole frame, the
non-autonomous system (1) is time-periodic over each reorien-
tation period τ, and so (1) may be re-cast as autonomous system
with time as an additional state variable [6]. This construction
renders the phase space Ω× [0,τ] compact, and so the Poincaré
recurrence theorem applies with the Poincaré section taken as
the cross section Ω. Toward the limit of many of reorientation
periods, the Poincaré map renders a clear representation of the
Lagragian topology, where coherent structures corresponding
to regular (non-chaotic) regions, which are topologically dis-
tinct from ergodic (chaotic) regions of the map. These regions
are clearly shown in Fig. 2(a)-(c), which depicts several 2D sur-
faces of the full 3D Poincaré section for the 3D RPM flow in
Ω. The full 3D Lagrangian topology consists of the foliation
of these 2D surfaces throughout Ω, which we shall explore in
greater detail throughout this Section.

Symmetries of the map ϒ

Symmetries play an important role in organising fluid transport,
as they impose constraints on both the Lagrangian topology

and associated dynamics. The basic symmetries (6), (5) of the
steady flow ϒ̃t impart several symmetries of the stroboscopic
map ϒ which manifest in the Lagrangian topology. The gen-
eral axisymmetry (5) contains as a special case the xz reflection
symmetry ϒ̃t = Sxzϒ̃tSxz, and so Poincaré map ϒ is symmetric
in the xy-plane, where

ϒ = Ry
Θ

ϒ̃τ = Ry
Θ

Sxzϒ̃τSxz = SxzR
y
Θ

ϒ̃τSxz = SxzϒSxz. (27)

As the xz symmetry plane itself is invariant under ϒ, without
loss of generality we only consider transport in the y+ hemi-
sphere. Furthermore, the xz-plane acts as an impenetrable bar-
rier which divides Ω into two topologically distinct regions for
all τ, Θ.

The other symmetry of ϒ is obtained via the reflection reversal
symmetry (6) as follows,

ϒ = Ry
Θ

ϒ̃τ = Ry
Θ

Sxyϒ̃τSxy = Ry
Θ

Sxyϒ
−1Ry

Θ
Sxy = S1ϒ

−1S1 (28)

where S1 = Ry
Θ

Sxy. One can compute that S1 is the map that
reflects a point through the plane z = −sinΘ

cosΘ+1 x. Therefore struc-
tures in the Lagrangian topology also evolve symmetrically
about this plane as, illustrated in Fig. 2(a)-(c) by the reflection
symmetry of the coherent structures.

Mode Locking within the 3D RPM Flow

It is instructive to consider the 3D RPM flow v toward the limit
τ→ 0, which corresponds to an steady flow comprising of a
superposition of all of the steady flows ṽ reoriented under Ry

θ
.

If the reorientation angle Θ is incommensurate with π, then the
sequence of dipole positions θ = nΘ for n = 0,1,2, . . . ,∞ forms
a space-filling set which densely fill the equator. Conversely,
if Θ/π is rational such that Θ = ( j/k)2/π, then the full set of
dipole positions form a discrete periodic sequence with period
k. As such, the 3D RPM flow for irrational Θ/π in the limit τ→
0 is identically zero, as the space-filling set of dipole positions
result in cancellation of the source and sink terms. Similarly
for rational Θ/π with k even, such cancellation occurs and the
net flow is zero. Only for the case with Θ/π rational and k odd
does the superposed flow remain non-zero for τ→ 0, where the
Stokes streamfunction Ψ′ of v is given by the superposition

Ψ
′ =

1
k

k

∑
i=1

Ry
iΘΨ, (29)

where the xz-plane of Ψ′ is shown in Fig. 2(d) for Θ = 2π/3.
As such, for odd k in the limit τ→ 0, the Lagrangian topol-
ogy is completely regular and k-fold rotationally symmetric (as
given by Ψ′). Such mode locking persists for small perturba-
tions to finite τ, where the mode-locked region of the parameter
space Q = τ,Θ widens in Θ with increasing τ, forming Arnol’d
tongue-like structures very similar to that observed for the 2D
RPM flow [7]. Mode-locked regions for even k also arise at fi-
nite τ, and these non-chaotic, mode-locked structures emanate
into Q from rational values of Θ/π along the τ = 0 axis.

With increasing τ, these Arnol’d tongues eventually collide and
the competing resonances between colliding tongues drive sta-
ble elliptic lines to bifurcate to hyperbolic lines via a periodic-
doubling cascade around τ∼ 1. This appears to be the primary
route to globally chaotic dynamics for the 3D RPM flow. At in-
termediate values of τ, mixed chaotic and regular dynamics are
observed within the Poincaré section, as shown in Fig. 2(a)-(c),
where the period-1 elliptic line (shown in orange) and associ-
ated coherent structure arising from the k-fold rotationally sym-
metric streamfunction Ψ′ (Fig. 2(d)) can be clearly seen. Other
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Figure 3: (a) A level surface of G. The thick solid line is T ,
the thick dashed line is T ′, and the dashed lines are streamlines
of ϒ̃t that pass through T ′. (b) Perturbations of the invariant G
as the particle is advected for 1000 iterations. The scaling is
such that G = 1 and G = 0 correspond to the xz-plane and the
spherical boundary respectively.

non-chaotic coherent structures associated with higher-order el-
liptic lines and associated cantori are also clearly apparent, sur-
rounded by a background chaotic “sea”. In 3D these coherent
structures form non-chaotic tubes throughout the flow domain
Ω, and with increasing τ these structures diminish in size until
they are virtually undetectable and the system may be consid-
ered to be globally chaotic.

As such, the 3D RPM flow appears to share many qualitative
features with its 2D counterpart [7], and so one may consider
the 3D system as a foliation of nested 2D surfaces, as indi-
cated by Fig. 2(a)-(c). Of paramount importance is whether
fluid transport occurs transverse to these nested 2D surfaces,
as this is the mechanism by which complete mixing and ergodic
transport within Ω may occur.

Adiabatic Surfaces of the 3D RPM Flow

Detailed analysis shows that fluid particles are not strictly
trapped within the 2D shells shown in Fig. 2(a)-(c), but rather
hop from shell to shell with time as shown in Fig. 3(a). This
behaviour suggests the shells are not invariant under the flow ϒ

(in which case they would be trapped for all time), but rather the
shells form an so-called adiabatic surfaces which admit slow
transverse transport. In essence, these adiabatic surfaces arise
due to the fact that the actions of particle reorientation and ad-
vection which comprise ϒ admit invariant surfaces which are
similar but not the same. If the associated invariant surfaces
were identical, this invariant structure would be preserved un-
der the Poincaré map ϒ, however small discrepancies between
these invariant surfaces allow slow “hopping” as the reorienta-
tion and advection operators are iterated. We show this more
clearly as follows.

Whilst Ψ, φ form an orthogonal pair of invariants of ϒ̃, there
exist an infinite number of such pairs, and so we may construct
another invariant from Ψ, φ. Consider the streamline T given
by the intersection of Ψ = ψ0 and φ = π/2 (see Figure 3(a)). If
we rotate this streamline by π/2 about the y-axis to form T ′, the
surface formed by the union of all streamlines that pass through
T ′ is a level surface of the invariant G, where

G(ρ,θ,z) = Ψ
(
ρ̃(Ψ(ρ,z))sinθ, ρ̃(Ψ(ρ,z))cosθ

)
,

where ρ̃(ψ) =

√
1+2π2ψ2−2π

√
2ψ2 +π2ψ4.

(30)

As G is close to invariant under rotation about the y-axis, the
map ϒ produces small perturbations in G (as per Fig. 3(b)), and
so G forms an adiabatic surface under ϒ. The size of these
perturbations vary across each adiabatic surface, which decay
to zero toward the dipole reorientation equator. As shown in

Fig. 3(b), shell hopping for ergodic particles appears to follow a
punctuated series of quasi-periodic cycles of varying duration,
whilst particles in regular regions follow an indefinite quasiperi-
odic orbit and so only traverse a fixed number of shells. As
such, with time particles in ergodic regions may globally tra-
verse the entire 3D ergodic region, whilst particles in regular el-
liptic tubes only traverse a fixed region of the tube. Hence when
the Lagrangian topology is globally ergodic, fully 3D transport
within Ω is possible although limited by transport across adia-
batic surfaces. The separation of transport timescales across and
within the adiabatic surfaces allow the transport dynamics may
be posed in terms of canonical action-angle (slow-fast) variables
for which a perturbative framework [12] can be used to quantify
the transport dynamics which is a topic of future research.

CONCLUSIONS

We have studied chaotic advection in a 3D transient potential
flow, and elucidated the Lagrangian topology over the param-
eter space Q = τ×Θ. A highly efficient mapping method has
been developed to solve the advection equation which is ex-
plicitly volume-preserving. The Lagrangian topology of the 3D
RPM flow is comprised of the foliation of 2D adiabatic sur-
faces emanating from the xy-plane toward the spherical bound-
ary. The Lagrangian dynamics on these surfaces is qualitatively
similar to that of the 2D RPM flow, where regular mode-locked
Poincaré sections emanate in Q from rational values of Θ/π

along the τ = 0 axis which collide and competing resonances
drive a period-doubling route to chaos around τ∼ 1. The nested
surfaces in the Poincaré section are adiabatic surfaces which
arise from the fact that invariant surfaces under the steady flow
ṽ are close to rotationally symmetric under the transient flow v.
The detailed mechanics of adiabatic transport in the 3D RPM
flow is yet to be uncovered, but is fundamentally distinct to that
observed in other 3D chaotic flows. These results provide the
first observations of chaotic advection in a 3D potential flow,
which exhibit a wholly new mechanism of 3D transport.
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