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ABSTRACT 
Computational Fluid Dynamics (CFD) modelling offers 
powerful simulation capability, but only provides 
information for a given design and set of process 
conditions. While it allows comparison between different 
outcomes, CFD results alone do not provide an optimised 
outcome. 
 
The computational cost associated with the use of high-
fidelity CFD models poses a serious impediment to the 
successful application of optimisation algorithms in 
engineering design. Advances in hardware and parallel 
processing have reduced costs by orders of magnitude 
over the last few decades, but the fidelity with which 
engineers desire to model systems has also increased 
considerably. Evaluation of such models may take 
significant computational time for complex geometries. 
 
In many design problems, thousands of function 
evaluation may be required to undertake an optimisation 
study. As a result, CFD models are often impractical for 
design optimisation. In contrast, surrogate models are 
compact and cheap to evaluate (order of seconds or less) 
and can, therefore, be easily used for such tasks. 
 
This paper applies surrogate modelling techniques to a 
CFD model of sediment transport in a raked industrial 
thickener. The global surrogate produced using radial 
basis functions is used to demonstrate single and multi-
objective optimisation for the case study. For multi-
objective problem, use from a practical design 
perspective of the information contained in the set of 
optimal solutions is illustrated through four examples. 

NOMENCLATURE 
f  function 
f  function data 
f̂  model of f  
k  number of folds 
N  integer number 
s  real number 
x  input sample points 
y  true model output 
y  mean true model output 
!y  predicted model output 
β  RBF model parameters 
!  model error 
 
Subscripts 
i  index 
 

INTRODUCTION 
For many industrial fluid dynamics problems, it is 
impractical to perform experiments on the physical world 
directly. Instead, complex, physics-based simulation 
codes are used to run experiments on computer hardware. 
Accurate, high-fidelity Computational Fluid Dynamics 
(CFD) models are typically time consuming and 
computationally expensive, a serious impediment to the 
successful application of formal sensitivity analysis in 
engineering design. While advances in High Performance 
Computing and multi-core architectures have helped, 
routine tasks such as visualisation, design space 
exploration, sensitivity analysis and optimisation quickly 
become impractical (Simpson et al., 2008; Forrester et al., 
2008). As a result, researchers have turned to methods 
that mimic the behaviour of the simulation model as 
closely as possible, while being computationally cheaper 
to evaluate (e.g. Morgans et al., 2007 and 
Stephens et al., 2011). This work concentrates on the use 
of data-driven, global approximations using compact 
surrogate models in the context of computer experiments. 
The objective is to construct a surrogate model that is as 
accurate as possible over the complete design space of 
interest using as few simulation points as possible. Once 
constructed, the global surrogate model is reused in other 
stages of the computational engineering pipeline, such as 
optimisation. 
 
This paper describes the application of surrogate 
modelling using Radial Basis Functions to a case study of 
a CFD model of sediment transport in an industrial 
thickener. Multi-objective optimisation is then conducted 
on the produced surrogate model, clearly demonstrating 
the advantages over optimisation by simple comparison 
of CFD outputs. 

SURROGATE MODELLING 
Two different approaches have been developed to deal 
with the problem of costly simulation codes: model-
driven and data-driven. Model-driven approximation is 
commonly known as Model Order Reduction (MOR). 
Taking a top-down approach, MOR starts with the 
original model’s equations and derives approximations 
using rigorous mathematical techniques. In contrast, data-
driven approximation, also known as Reduced Order 
Modelling (ROM), takes a bottom-up approach. The 
exact, inner working of the simulation code is not 
assumed to be known; only the input-output behaviour is 
important. A model is constructed based on modelling the 
simulation code response to intelligently chosen input 
configurations. The application of surrogates in this paper 
concentrates on the use of the data-driven approach. 
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Surrogate modelling can be seen as a non-linear inverse 
problem for which the aim is to determine a continuous 
function (f) of a set of design variables from a limited 
amount of available data (f), as illustrated in Figure 1. 
While deterministic in nature, f can represent exact 
evaluations of the function f or noisy observations and in 
general cannot carry sufficient information to uniquely 
identify f, which may allow multiple surrogates to be 
consistent with the available data (Figure 2). Thus, 
surrogate modelling deals with the twin problems of: (a) 
constructing a model !  from the available data f, and 
(b) assessing the errors (ε) attached to it. 

 

Figure 1: Surrogate model input and output relationship. 

 
Figure 2: Multiple surrogates may be consistent with the 
data.  

For a given problem there may be a preference for one or 
the other, based upon expert knowledge of the function f 
or the simulation code. 

Hence, using the surrogate modelling approach the 
prediction of the simulation-based model output is 
formulated as fp x( ) = f̂ x( )+! x( ) .  
 
Model-driven modelling has the advantage of staying true 
to the “real” simulation model since physical laws are 
conserved. In contrast, the advantage of data-driven 
modelling is its generality; it can be applied to any 
problem where the process can be described as a data 
generating “black box”. This is useful when the available 
simulation code is such that it cannot be altered in a 
domain-specific way. In addition, often it is the global 
input-output behaviour that is important. In this case, all 
the approximation intricacies of the different subsystems 
in the global system no longer play a role and a full MOR 
may not be worthwhile. 
 
APPLICATION OF SURROGATE MODELS 
An important distinction must be made between two 
different application areas of surrogate models. The first 
is by far the most popular and involves constructing local 
surrogates that are accurate in local regions of the 
parameter. Alternatively, a global surrogate describes the 
global behaviour of the system. Here the surrogate is 

tuned to mimic the underlying models as closely as 
needed over the complete parameter space. Such 
surrogates are a useful, cheap way to gain insight into the 
global behaviour of the system. The global approach has 
been utilised in this paper. 
 
Local surrogates 
The most common use for local surrogates is to guide the 
search towards a global optimum, an approach often 
referred to as surrogate-assisted optimisation (SAO) or 
surrogate-based optimisation (SBO). Once the optimum 
is found the surrogates are discarded as they only contain 
accurate data in the vicinity of local optima of the system 
and serve no further use. Another drawback to local 
surrogates is that the output function is generally the 
objective function of the optimisation problem, which can 
be a complicated function of the simulation outputs and 
hence the actual simulation outputs are lost in the 
objective function. This can be overcome by storing the 
simulation outputs during the surrogate construction 
phase. 
 
Global surrogates 
Global surrogate models are particularly useful for design 
space exploration, sensitivity analysis, visualisation, and 
what-if analysis. If optimisation is the goal, it can be 
argued that a global model is less useful, since significant 
time savings could be achieved if more effort were 
directed at finding the optimum rather than accurately 
modelling regions of poor designs. This paper will 
demonstrate where global surrogates are very useful for 
multi-objective optimisation. 
 
It could be argued that to obtain an accurate global 
surrogate, numerous simulations still need to be 
performed, with the same problem of computational cost.  
However, this is not the case since: (1) constructing a 
global surrogate is a one-time, up-front investment, (2) 
adaptive modelling and sampling (Gorissen et al., 2010) 
can drastically decrease the required number of data 
points to produce an accurate model and (3) the global 
surrogate can often be reused for various analyses such as 
sensitivity analysis, optimisation and design tools. 
 
CONSTRUCTION OF THE SURROGATE MODEL 
Accurate surrogate modelling of an expensive simulation 
code involves a number of design choices that need to be 
addressed. 
 
Sampling strategy 
In general, theory covering the topic of sampling strategy 
is referred to as Design and Analysis of Computer 
Experiments (DACE). When dealing with computer 
experiments, the data is typically deterministic and noise-
free. Thus, in computer experiments there is no need to 
do replicates (as opposed to physical experiments) and 
the classical theory of optimal design does not apply. 
Instead, a major concern is to create an experimental 
design which can sample the complete design space in a 
representative way with a minimum number of samples. 
 
Mathematically, this means that in order to construct a 
surrogate model f̂ x( )( ) , a dataset needs to be populated, 

for which two approaches exist. In the first, the size and 
distribution of the dataset is chosen up-front. Common 
sampling methods that fit in this category are uniform 
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grid, factorial design and Latin hypercube (Santner et al., 
2003). However, since the simulation code used for 
evaluating the dataset is expensive to compute, it 
becomes important to avoid unnecessary simulations. At 
the same time, the complexity of the response surface is 
not known up-front and defining a data distribution a 
priori is difficult. The second approach involves selecting 
the data points iteratively, at locations where the 
information gain will be the greatest. This process is 
called Adaptive sampling or Active Learning (Gorissen et 
al., 2010). A large variety of Adaptive sampling methods 
have been developed, e.g. the Expected Improvement 
sampling strategy (Jones et al., 1998 and Schonlau, 1997) 
and the LOLA-Voronoi sequential design strategy 
(Crombecq et al., 2009).  
 
Modelling strategy  
Popular surrogate model types include Response Surface 
(RS) models, Radial Basis Function (RBF) models, 
Artificial Neural Networks (ANN), Support Vector 
Machines (SVM) and Kriging models. Different model 
types are preferred for different application domains. 
However, in general there is no theory that can be used a 
priori for selection of a model type. This work has 
exclusively used Radial Basis functions with a Gaussian 
basis function, as they were found to be the best suited to 
the case studied. Radial basis function (RBF) models use 
linear combinations of radially symmetric functions to 
interpolate samples data points.  A RBF with a Gaussian 
basis function models is 

 f̂ x( ) = wie
!!i x!xi( )

i=1

N

"  (1) 

Where •  is the Euclidean distance, N is the total 

number of sample points, xi is the ith sample point, and 
the γ’s are model parameters (often set to a constant) and 
the w’s are weighting factors found solving a linear 
system of N equations.  RBF models are shown to 
produce a good fit for arbitrary contours (Powell, 1987).   

Model accuracy assessment and cross-validation 
For global modelling it is essential to assess the accuracy 
of a surrogate for prediction before it is used, usually by 
comparing some response data produced by the analysis 
code (CFD output) with corresponding response data 
predicted by the model. A metric is calculated based on 
these two sets of values (such as root-mean-squared 
error) to quantify the degree of accuracy. 
 
After a surrogate model is built, a straightforward way to 
assess its accuracy is to run the analysis code on a large 
additional set of sample points and compare the output 
with those predicted by the model (Wang and Lowther, 
2006). However, this comes at a high cost, as CFD 
simulations may take significant computational time.  
The cross-validation method can estimate the model’s 
accuracy without requiring any additional sample points. 
In general, the data is divided into k subsets (k-fold cross-
validation) of approximately equal size. A surrogate 
model is constructed k times, each time leaving out one 
of the subsets from training, and using the omitted subset 
to compute the error measure of interest. The average of 
the error measure is calculated from the result in each of 
the k iterations. 
 

Cross-validation works by estimating a model accuracy 
measure with only a limited number of samples points. 
The computational cost of cross-validation (i.e. 
generating k surrogates) is justified by the fact that model 
fitting and assessment usually takes only seconds to 
minutes, while a single run of the CFD code could last 
hours to days, if not longer. 
 
While cross-validation almost always performs very well 
(Bengio and Chapados, 2003), Gorissen et al. (2009a) 
showed that it is not always efficient at preventing 
unwanted ripples or bumps in the final model response. A 
new measure called Linear Reference Model (LRM) has 
been developed by Gorissen (2010) that helps reduce this 
problem. Any visible behavioural complexity (bumps, 
ripples, etc) should be explainable by data points at (or 
near) those locations. Thus, intuitively, if there is no such 
evidence nearby, the bump should be regarded as a model 
artefact. The LRM metric is based on the core assumption 
that if nothing else is known, the model behaviour 
between two neighbouring points should be linear. This is 
achieved by penalising a model proportional to how 
much it deviates from a linear fit. 

CASE STUDY 

Problem description 
CFD modelling of process unit operations is a tool that is 
being used increasingly within the minerals processing 
industry to reduce operating and capital costs and 
increase throughputs. One such unit operation where 
CFD has been applied is gravity thickening (Johnston et 
al., 1998; Fawell et al., 2009; Kahane et al., 2002; 
Rudman et al., 2008; Owen et al., 2009; Rudman et al., 
2010). The principle is simple – adding flocculant to 
aggregate the fine particles and allowing them to settle to 
produce clear overflow liquor and concentrated 
underflow slurry. 
 
Understanding material transport generated by raking in a 
thickener is important to overall thickener performance. 
Predictions of velocity vectors, shear rate and residence 
time throughout the bed region may be obtained from 
detailed knowledge of the rake geometry and the physical 
properties of the bed material. Rudman et al. (2008) 
presented details of a single-phase CFD model developed 
specifically for the analysis of the material transport 
aspects of raking within industrial thickeners, including 
torque and residence time distribution prediction. Such a 
model can be used to investigate the effect of rake design 
on material transport within industrial thickeners. 
 
The aim of this study was to build a surrogate utilising 
the outputs from the CFD model detailed in Rudman et 
al. (2008). Once built, the surrogate can be used to 
investigate optimum rake blade angle and speed. 
 
In this case study, the system was a 2 m diameter pilot 
thickener, 2 m high with a 14º floor angle. The rake was 
comprised of two arms, each with 5 equi-spaced blades, 
on a 75 mm diameter rake shaft. The blade angle could be 
varied from 0-65º, as shown in Figure 3. Each blade was 
290 × 75 mm and they were positioned with a gap of 
23 mm between the blade and the thickener floor. Slurry 
is fed into the thickener through a ring manifold at a rate 
of 3 m3 h-1. The experimental rheogram for the slurry is 
shown in Figure 4.  
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Figure 3: Example rake blade configurations, (a) 0º, 
(b) 30º, (c) 65º. 
 

 

Figure 4: Rheogram of shear stress versus strain rate for 
the slurry used in the simulations. 

The parameters relating to rake design and operation 
evaluated for their influence on material transport were: 

• Rake blade angle (0 - 65º), and 
• Rake speed (0.2 - 2 rpm). 

CFD computations were performed with ANSYS-CFX 
(release 12.1) using the sediment transport model 
described in Rudman et al. (2008). Simulation meshes 
contained 0.7 to 1.2 million nodes depending on the blade 
angle. The ANSYS-CFX “high resolution” differencing 
scheme was used for the convection terms. The 
simulation is performed in a rotating coordinate frame 
attached to the rake. In this frame, the geometry is 
stationary (although the tanks walls rotate), making the 
simulation simpler to undertake. The bed material is 
assumed homogeneous and no dewatering is included in 
the model. The measured rheogram (Figure 4) is used in 
the simulation with a 1-D interpolation being used for its 
input. Each simulation took approximately 12 hours using 
1 CPU core. The information produced by the rake model 
is presented in terms of CFD images and calculated 
parameters. Figure 5 is an example of the graphical 
output, where a vertical slice plane through the middle of 
the thickener is presented displaying the residence time.  

 
Figure 5: Residence time contours on a plane through the 
rake (rake speed 1.25 rpm, blade angle 30º). Ten linearly 
distributed colour bands of blue to red from 0 to 4000 s. 
 

The residence time is calculated using a convection only 
transport equation. The output quantities from CFD used 
for the surrogate building were the components of rake 
torque (pressure and viscous), total torque and a measure 
of plug flow. For plug flow, the residence time for bed 
material reaching the outlet should be constant. This 
means that the standard deviation of the residence time 
needs to be small. This standard deviation has been 
divided by the mean residence time (for plug flow) to 
develop a plug flow metric. A value of zero represents 
plug flow and values greater than one indicate very poor 
performance. 

Sampling strategy 
For this case study, 60 sample points were used to build a 
surrogate model (Figure 6). Latin hypercube sampling 
(Santner et al., 2003) with corner inclusion was used for 
the sample selection. This strategy samples all regions of 
the design space equally, making it very suitable for 
modelling with computer analysis code. 

 

Figure 6: Samples of the input parameters used to build 
the global surrogate models. 

RESULTS 

Construction of the global RBF model 
All of the RBF surrogate models were built using the 
SUrogate MOdeling (SUMO) MATLAB toolbox 
(Gorissen et al., 2010), a plug-in based adaptive tool that 
automatically generates a surrogate model within the 
predefined accuracy and time limits set by the user. 
Different plug-ins are supported: model types, model 
parameter optimization algorithms, sample selection, and 
sample evaluation methods. 
 
For the work described here, the toolbox was used with a 
set control flow as outlined below. A set of samples were 
chosen as described in the Sampling strategy section. The 
CFD model was run for each of the chosen sample points 
to generate the model output for each of these input 
points. Based upon this set, one or more surrogate models 
of the chosen type (e.g. RBF) are constructed and their 
parameters optimized using a Genetic Algorithm (GA). 
Models are assigned a score based on an equal weighting 
of two measures (e.g. cross-validation and LRM). The 
score for each model is used as the fitness to drive the 
GA to a good optimum in the model parameter 
optimization landscape. The optimization continues until 
one of the following three conditions is satisfied: (1) no 
further improvement is possible, (2) the maximum 
allowed time has been reached, or (3) the user required 
accuracy has been met.  The maximum time allowed for 
the GA was 1 hour.  In all cases this was longer than 
necessary, since the best solution was found after a few 
generations. 
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The GA as implemented in the MATLAB GADS toolbox 
was used to search the parameter space of possible 
models. The RBF model has a set of hyper-parameters; 
the parameter space was searched for the optimal basis 
function combination and the parameters of each selected 
basis function. 
 
The population size of the GA is set to 10 as is the 
maximum number of generations. The GA cross over 
fraction was set to 0.7. 
 
The error function used to measure the fitness of each 
model is defined as: 

 Error y, !y( ) =
yi ! !yi

i=1

N

"

yi ! y

i=1

N

"
 (2) 

where iy , !yi , y  are the true, predicted and mean true 
response values, respectively. The metric used to drive 
the hyper-parameter optimisation was an equally 
weighted combination of the error function in (2) on a 5-
fold cross-validation and the LRM measure. 
 
Once the RBF model has been built, a 20-fold cross-
validation was used to measure the accuracy of the final 
model. Results from this cross-validation are presented in 
Figure 7 for each of the CFD model outputs (a separate 
model was built). It can be seen that the surrogates for 
each of the torque outputs have similar level of accuracy. 
The plug flow metric shows some deviation between the 
predicted and measured values at the higher end of the 
range. This is caused by the scarcity of data points with 
this magnitude of the metric. The predictions in this 
region could be improved by the addition of further 
samples into the building of the surrogate. 
 
Once the surrogate models have been created they can be 
used for many purposes, including visualisation of the 
relationship of model inputs to outputs, design tools 
(what-if analysis), sensitivity analysis and optimisation. 

Optimisation 
The case study discussed in this paper involves a multi-
objective optimisation problem (MOOP). There are two 
competing objectives – minimise rake torque and 
maximise the plug flow behaviour (minimise the plug 
flow metric).  
 

Single composite objective function 
In the composite case, a single objective function using 
combinations of the individual objective functions is 
constructed (minimise the rake torque and minimise the 
plug flow metric). To illustrate this approach, three 
composite objective functions have been selected - (i) 
more preference is given to (80:20), (ii) equal preference 
to minimise torque and plug flow metric (50:50) and (iii) 
more preference given to minimising the plug flow metric 
(20:80). In each of these cases the torque and plug flow 
metric were scaled by the maximum value found in the 
entire design space, before forming the weighted 
composite objective function. Contour plots of the three 
objective functions are shown in Figure 8, with the 
minimum marked with a white star in each of the cases. 

The optimum values shown in this figure illustrate the 
subjective nature of the preference-based approach. The 
next section illustrates a novel technique to finding the 
Pareto-optimum set using the surrogates. 
 

 

 

 

 
Figure 7: Cross-validated predictions versus actual 
values for (a) pressure component of torque, (b) viscous 
component of torque (c) total torque and (d) plug flow 
metric. 
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Figure 8: Contour plots showing the three different 
objective functions and the optimum value (white star) 
for (a) 80:20, (b) 50:50 and (c) 20:80 preference to torque 
and plug flow metric, respectively. 

Multiple objective functions 
A multi-objective optimisation problem deals with more 
than one objective function. In most practical decision-
making problems, multiple objectives are evident. 
Because of a lack of suitable solution methodologies, a 
MOOP has been mostly cast and solved as a single-
objective optimisation problem in the past (Deb, 2005), 
as shown in the previous section. 
 
Consider the decision-making involved in designing a 
thickener rake. Start by taking two extreme hypothetical 
designs, i.e. one that requires large torque and produces 

near plug flow behaviour (A) and one that requires low 
torque and produces significant non-plug flow (B). If low 
torque is the only objective of this decision-making 
process, the optimal choice is solution B. However, if 
plug flow were the only objective then the optimal choice 
would be solution (A). This so-called two-objective 
optimisation problem need not be considered as the two 
independent optimisation problems, the results of which 
are the two extreme solutions discussed above. Between 
these two extreme solutions, there exist many other 
solutions, where a trade-off between torque and plug flow 
exists. Thus, between any two such solutions, one is 
better in terms of one objective, but this betterment 
comes only from a sacrifice on the other objective.  In 
this sense, all such solutions are optimal solutions to a 
multi-objective optimisation problem.  Often, such trade-
off solutions provide a clear front on an objective space 
plotted with the objective values.  This front is called the 
Pareto-optimal front and all trade-off solutions are called 
Pareto-optimal solutions. Not all rake designs will lie on 
the Pareto-optimal front; in fact there are often more sub-
optimal configurations than optimal. 
 
In the case of multi-objective optimisation, the design 
engineer now has a dilemma. Which of these optimal 
solutions should they choose? If a set of trade-off 
solutions are already worked out or available, one can 
evaluate the pros and cons of each of these solutions 
based on all such non-technical and qualitative (yet still 
important) considerations and compare them to make a 
choice.  Thus, in a multi-objective optimisation, ideally 
the effort must be made in finding the set of trade-off 
optimal solutions (Pareto-optimal-front) by considering 
all objectives to be important.  After a set of such trade-
off solutions are found, a user can then apply higher-level 
qualitative considerations to make a choice. 
 
Rather than using multi-objective optimisation algorithms 
as discussed by Deb (2005), a novel approach is taken 
here for finding the Pareto-optimal front. One of the 
properties of Pareto-optimal fronts is that they always 
form part of the boundary of the feasible region in 
objective space. All points in the design variable space 
can be mapped to the objective space, as shown in Figure 
9. Using this knowledge, if one could plot enough points 
in the objective space, then the Pareto-optimal front could 
be identified. 

 

Figure 9: Representation of the design variable space and 
the corresponding objective space. 

Surrogates allow rapid evaluation of model output for 
given inputs. Therefore, the surrogate model could be 
evaluated at many different design variable combinations 
to allow generation of the objective space feasible region 
and hence locate the Pareto-optimal front. A rectangular 
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grid comprising of 2600 input point combinations was 
evaluated for each of the objective functions, with the 
time taken for this evaluation being less than 1 minute. 
The objective function values for each of these input 
points can be plotted in objective space, as shown in 
Figure 10, with the Pareto-optimal front marked by the 
red line. The coloured stars on this line indicate the 
locations of the three optimal solutions found using the 
different preference composite objective functions. Each 
blue diamond in this figure represents one design variable 
combination of blade angle and rake speed. 

 

Figure 10: Responses for the rake transport case study 
plotted in objective space. 

Apart from determining optimal solutions, Figure 10 can 
also be used to determine how to move from a sub-
optimal solution to one of the Pareto-optimal solutions. 
As an example, assume a rake design with a blade angle 
of 40º and a rake speed of 0.25 rpm. These conditions are 
placed at the position marked with the red star in Figure 
11. Consider the following scenarios: 

(i) Find a design that has the same torque but improves 
the plug flow behaviour. This is shown by the 
horizontal arrow in Figure 11. The point of the 
Pareto front (end of the arrow) can then be mapped 
back from objective space into design space 
allowing the blade angle and rake speed to be 
determined. The design point in the Pareto-optimal 
set for this torque is a blade angle of 18.2º and rake 
speed of 2 rpm.  

(ii) The plug flow metric is acceptable, but would like 
to reduce the torque. This is shown by the vertical 
arrow in Figure 11.  The design point in the Pareto-
optimal set for this plug flow metric is a blade 
angle of 10.2º and a rake speed of 0.6 rpm.  

(iii) The blade angle cannot be changed. Are there any 
possible improvements by changing the rake speed? 
To investigate this, information is extracted from 
the global surrogates for rake torque and the plug 
flow metric at a fixed blade angle of 40º; this is 
plotted in objective space, shown by the green line 
in Figure 12. Following the green line to the left of 
the star is for increasing rake speed, but the torque 
increases as well. If rake torque is not an issue then 
the optimal speed for this blade angle is 1.75 rpm. 

(iv) The rake speed cannot be changed. Are there any 
possible improvements that can be made by 
changing the blade angle? Again, information is 
extracted at the fixed rake speed of 0.25 rpm from 
both global surrogates of the rake torque and rake 
speed and plotted in objective space (magenta line 
in Figure 12). In this case we can see that the 

current blade angle is giving approximately the best 
achievable plug flow metric for this speed. Moving 
upwards from the red star is for increasing blade 
angles and downwards for decreasing angles. The 
only possibility in this case is to decrease the rake 
torque whilst at the same time accepting 
deterioration in the plug flow behaviour. 

 
Figure 11: Objective space illustrating design scenarios 
(i) and (ii). 

 
Figure 12: Objective space illustrating design scenarios 
(iii) and (iv). 

CONCLUSION 
A Radial Basis Function (RBF) surrogate model has been 
described, along with the approach to optimising its 
parameters to make a globally relevant model. The output 
from a CFD model of sediment transport in a raked 
thickener was used to produce surrogate models 
representing rake torque and plug flow behaviour. 
Examples were provided demonstrating how these 
surrogate models can be used to optimise the rake design.  

The most important component of this case study was the 
demonstration of how a global surrogate could be utilised 
for multi-objective optimisation. Solution of multi-
objective problems is the ultimate goal in design 
optimisation, as very few real world problems are single 
objective problems.  For the rake transport problem, the 
full set of trade-off optimal solutions could be found. 
Utilisation of the information contained in this set of 
optimal solutions from a practical design perspective was 
illustrated through four examples. 

It has been demonstrated through the case study how 
surrogate models can enable the realisation of the full 
potential of CFD models, and the effort required does not 
impede the practical use for engineering design tasks 
such as optimisation.  It must be stressed that surrogate 
models are only as good as the underlying CFD model 
from which they are created.  If the CFD model is not 
accurate and validated, neither will the surrogate model. 
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