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ABSTRACT 

The description of the fluid-dynamics and of mass transfer 

in gas-liquid systems requires the evaluation of bubble 

size and composition distributions, dictated by bubble 

breakage, coalescence and mass exchange with the liquid 

phase. In our previous work, gas-liquid systems were 

investigated by coupling CFD with mono-variate 

population balance equation (PBE) solved with the 

quadrature method of moments (QMOM). The problem is 

here extended to the solution of multi-variate PBE. In this 

work the Conditional Quadrature Method of Moments 

(CQMOM) is for the first time validated by comparison 

with Direct Simulation Monte Carlo (DSMC). Results, 

obtained from the comparison of the two methods, show 

that the quadrature approximation implicitly used in 

CQMOM for overcoming the closure problem is very 

accurate. CQMOM is then implemented in ANSYS/Fluent 

and OpenFoam and predictions are compared with 

experiments, resulting in very good agreement. 

NOMENCLATURE AND ACRONYMS 

G continuous rate of change of bubble size 

h discontinuous event for coalescence and break up 

L bubble size 

Mk,l mixed moment of order k and l

n number density function

uL  bubble velocity conditioned on size

� number of oxygen moles in one bubble 

��  mass transfer rate 

CFD computational fluid dynamics 

CQMOM conditional quadrature method of moments 

DQMOM direct quadrature method of moments 

DSMC direct simulation Monte Carlo 

FV finite volume 

ODE ordinary differential equations 

NDF number density function 

PD product difference 

QBMM quadrature-based moment method 

QMOM quadrature method of moments

INTRODUCTION 

The simulation of gas-liquid systems is very important in 

the process industry since gas-liquid stirred tanks and 

bubble columns are encountered in many important 

chemical processes (such as oxidation, hydrogenation, 

etc.). 

The fluid dynamics of these systems has been widely 

studied with CFD, by resorting to different multi-phase 

models, notably the multi-fluid approach. This and other 

approaches require however an a priori assumption on the 

mean bubble size to be used and in the simulation, and are 

strongly limited by the assumption that this value is 

constant throughout the computational domain.  

It is well known however that bubbles are distributed over 

the different characteristic properties (i.e. internal 

coordinates) such as size, shape, content of chemical 

components, etc. These distributions, described by a NDF, 

change due to the relevant phenomena involved, namely 

bubble convection, bubble growth or shrink, bubble 

coalescence and break up and mass transfer between 

bubbles and the continuous liquid phase.     

The main limitation of standard multi-fluid models were 

overcome when QBMM were introduced (Marchiso et al., 

2003a, 2003b; Marchisio and Fox, 2005) and 

implemented in CFD. These methods, implemented in 

ANSYS/Fluent were recently applied to the simulation of 

gas liquid systems, focusing on the effect of accounting 

for size polydispersity with QMOM on fluid dynamics 

(Petitti et al. 2007; 2009) and on the quantitative 

validation of model predictions through comparison with 

experiments for bubble size distributions (Petitti et al., 

2010). More recently, DQMOM was applied to the 

coupled problem of accounting for size and composition 

polydispersity by using DQMOM (Buffo et al., 2012a). 

DQMOM performances were compared with those of 

CQMOM (Buffo et al., 2012b; 2011) and eventually 

CQMOM was found more suitable for gas-liquid 

applications. 

In this work CQMOM predictions are for the first time 

compared and validated with predictions obtained with a 

more accurate and complete method, namely DSMC, on 

simplified zero-dimensional systems. Then CMOM is 

implemented in OpenFoam and used to describe a real 

three-dimensional bubble column for which experiments 

are available for validation.   
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MODEL DESCRIPTION 

Population Balance Equation 

The gas-liquid system under investigation is described 

through a number density function, defined so that the 

following quantity: 

dLdLtn ��,,, x         (1) 

represents the number of bubbles per unit volume and at 

time t with size bounded in between L and L+dL and 

composition between � and �+d�. Composition is here 

described in terms of the absolute number of moles of 

chemical component (i.e. oxygen) contained within the 

bubble. The evolution of this NDF is described through a 

PBE that reads as follows: 
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where uL is the velocity of bubbles with size L, G is the 

continuous rate of change of bubble size due to mass 

transfer, ��  is the mass transfer rate and h is the rate of 

change of the NDF due to discontinuous events such as 

coalescence and break up. Standard sub-models were used 

for all these terms (for details see Buffo et al., 2011; 

2012b). The bubble velocity was calculated by using the 

classical multi-fluid model. So far only drag, lift and 

virtual mass forces were considered and for drag an 

empirical correlation based on the apparent swarm bubble 

terminal velocity was employed. The mass transfer rate 

was calculated by using the Higbie’s penetration model 

(and consequently the rate of change of bubble size) by 

taking the average penetration time equal to the 

Kolmogorov time-scale. Only coalescence and break up 

induced by turbulent fluctuations were considered. The 

coalescence efficiency is calculated as the exponential of 

the ratio of the contact and drainage time-scales, whereas 

it is assumed that bubble break up results in two fragments 

with a parabolic size distribution and equal concentration. 

It is worth mentioning that most of these rates are 

calculated based on the local value for the turbulent 

dissipation rate, obtained in turn from the solution of a 

standard k-� model for the gas-liquid mixture. 

Conditional quadrature method of moments 

CQMOM is based on the simple idea of deriving from 

Eq.(2) transport equations of the mixed moments of the 

NDF: 
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The closure problem generated in deriving the moment 

equation is overcome by using a quadrature 

approximation, corresponding to the following assumption 

for the NDF: 
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where the weights and conditional weights wα and wα,β and 

the nodes Lα and �α,β are calculated from the moments 

with an efficient inversion algorithm. Although the 

original CQMOM was formulated with an adaptive 

procedure where no priority was fixed for one internal 

coordinate on the other, in this case size is more important 

than composition, therefore N1 always refer to the number 

of nodes used for size and N2 for composition. For 

example, with N1 = 3 six pure moments with respect to 

size are necessary to calculate L1, L2 and L3 with the 

standard PD algorithm (i.e., M0,0; M1,0; M2,0; M3,0; M4,0; 

M5,0). Then, if N2 = 1, composition moments conditioned 

on L1, L2 and L3 are calculated by inverting a 

Vandermonde matrix by using M0,0, M0,1, M1,0, M1,1, M2,0

and M2,1 and eventually �1,1, �2,1 and �3,1 are calculated (by 

using again the PD algorithm).   

Figure 1: Computational grid of the investigated bubble 

column. The gas enters the domain (filled with a stagnant 

liquid) from a rectangular hole in the bottom and exits 

from the top. The extension of the domain in the three 

directions is 0.2 × 0.04 × 0.67 m corresponding to a total 

volume of 0.00536 m3 and a computational grid of 24640 

cells. 

TEST CASES AND NUMERICAL DETAILS

As already mentioned the aim of this work is to validate 

CQMOM performances via comparison with an 

alternative (more accurate) method and for this purpose 

DSMC is used.  

Two types of simulations were considered. First simple 

spatially homogeneous systems were considered. These 

simulations are very useful because they reveal all the 

interesting local aspects of the investigated phenomena 

(e.g. coalescence, breakage and mass transfer) and allow 

for the estimation of the error committed when using 

CQMOM instead of DSMC (which is considered here as 

the benchmark solution). Moreover, these simulation can 

be thought as a representation of a single cell of the 

computational domain in CFD simulations (since in FV 

codes each cell of the domain is considered as a perfectly 

mixed and homogeneous portion of the physical space). 

Subsequently a realistic test system was considered. In this 

work the bubble column experimentally and numerically 

investigated by Diaz et al. (2008) was simulated. A sketch 

of the computational domain and of the simulated 

geometry is reported in Fig. 1. 
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DSMC simulations were performed with an in-house code, 

already used for a similar system by Zucca et al. (2007). A 

detailed description of the algorithm can be found 

elsewhere (Liffman, 1992) but here we stress only that the 

number of notional bubbles undergoing randomly selected 

events was large enough (greater than 10,000) to ensure 

the statistical reliability of the results. 

CQMOM for a homogeneous system results instead in a 

system of ODE solved here with the standard Matlab 

integrator ode15s. CQMOM was solved by using a 

variable number of nodes for the quadrature 

approximation (from two to four) in order to assess the 

accuracy of the approximation. 

In all cases the studied system was composed by pure 

water and air, as continuous and disperse phases 

respectively. Standard physical properties for these phases 

were considered. 

All the simulation were initialized by prescribing the 

presence of bubbles inside the control volume. The initial 

bubble population was described as a log-normal 

distribution with respect to the size with a mean of 3.7 mm 

and a standard deviation of 15% of the mean value, but 

with the same oxygen concentration of 8.56 mol m-3 in all 

bubbles, corresponding to the concentration of oxygen in 

air at 25 ° C and 1 atm. The described initial condition had 

to be prescribed in the form of initial moments for 

CQMOM and these values were obtained by the 

initialization of the DSMC run.  

CQMOM was implemented in the CFD code opeanFoam 

for the simulation of the bubble column reported in Fig. 1. 

The implementation in OpenFoam was done in the 

compressibleTwoPhaseEulerFoam solver.  

RESULTS AND DISCUSSION 

Spatially homogeneous simulations 

Figure 2 reports the bi-variate NDF used as initial 

condition and as boundary (inlet) condition for the 

homogeneous simulations and the three-dimensional CFD 

simulations. This NDF represents a population of bubbles 

characterized by a log-normal bubble size distribution 

centred at 3.7 mm and by a standard deviation of 15 %. 

The bubbles are moreover characterized by identical 

oxygen concentration (and therefore with oxygen content 

proportional to the volume of the bubble). This condition 

well represents bubbles exiting a sparger and entering a 

bubble column.  

It is useful to stress here that although the two internal 

coordinates considered here are bubble size and bubble 

oxygen content, the representation is done here in terms of 

bubble size and bubble oxygen concentration, since this is 

easier to understand. Figure 2 reports the bubble size 

distribution (top), the oxygen concentration distribution 

(right) and the NDF representation in the bubble 

size/oxygen concentration plane.  

Figure 2: Initial condition for the NDF: log-normal 

distribution with respect to the size with a mean of 3.7 mm 

and a standard deviation of 15% of the mean value and 

with the same concentration of 8.56 mol/m3 in all bubbles 

(oxygen in air at 25° C and 1 atm). 

Let us now consider the results of a typical DSMC run for 

the spatially homogeneous case. For the system under 

investigation bubbles enter with the NDF reported in Fig. 

2, break up and coalescence (according to standard 

kernels) and exchange mass with the liquid, which is 

initially completely lacking oxygen. For this specific case 

the mean residence of the bubble was fixed equal to 1 s.   

As the simulation goes by, bubbles change their size and 

oxygen content distributions, until the liquid is saturated 

by oxygen and the bubbles do not change their 

concentration any more.  

Figure 3 shows the NDF during the transient when the 

oxygen has not yet fully saturated the liquid. As it is seen 

the action of coalescence and break up is to change the 

bubble size distribution. In this particular case coalescence 

prevails over break up and larger bubbles are formed. In 

addition to that the bubble size distribution becomes wider 

and wider, when compared to the initial log-normal 

distribution. As demonstrated by our simulations (not 

shown here) and as expected, the effect of coalescence and 

break up is to homogenize the oxygen concentration of the 

bubbles. In fact, by letting bubbles of different 

concentrations coalescence and then subsequently break 

up, forming fragments with the same oxygen 

concentration, the variance with respect to bubble oxygen 

concentration is reduced.  

The effect of mass transfer is instead to reduce the oxygen 

concentration in the bubbles and to increase this variance. 

In fact, as it is easily detectable in the figure, smaller 

bubbles (having higher surface-to-volume ratios and mass 

transfer coefficients) exchange mass faster than larger 

bubbles. As it is well known, this effect can be enhanced 

by a chemical reaction, that can accelerate mass transfer 

resulting in even spreader distributions.  

Also the effect of convection, namely in this spatially 

homogeneous system, the effect of introducing bubbles 

with the inlet NDF and of mixing them with the bubbles 

within the domain, is to increase this oxygen variance. 

 This results in the NDF reported in Fig. 3, that as can be 

easily seen it quite spread for both bubble size and 
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composition. It is worth mentioning here that the number 

of notional bubbles used in our DSMC is such that the 

result reported in Fig. 3 can be considered almost “exact”: 

it is in fact a very accurate solution of the PBE with this 

combination of kernels and mass transfer rate.  

Figure 3: Snapshot of the bubble population after 2.5 s. In 

the main plot, different colors are used to represent density 

of bubbles in ascending order from blue to red 

It is important to point out here that the NDF presents 

non-null variances with respect to both internal 

coordinates and that no algebraic relationship exists 

between the two variables. In fact, bubbles with the same 

size can have different concentrations and viceversa. This 

implies that a bivariate PBE is necessary for the accurate 

description of this gas-liquid system, as accounting only 

for the size distribution would lead to large errors 

(especially when non-linear terms due to chemical 

reactions appears in the governing equations!)   

Figure 4 reports instead the very same information when 

the transient dies out. In fact, after the transient period in 

which oxygen goes from the bubbles to the liquid, when 

the liquid is saturated with oxygen, bubbles enter and exit 

from the domain without exchanging oxygen and the 

concentration do not vary anymore. 

One should notice that coalescence and breakage still have 

an impact of bubble size distribution (represented on top) 

due to the fast time scales of these two phenomena. It is 

important to stress here that this steady-state with uniform 

bubble oxygen concentration is possible here only because 

no chemical reactions are present. If for example, oxygen 

in the liquid were consumed by a chemical reactions the 

steady-state would resemble the NDF reported in Fig. 3, as 

demonstrated by our simulations (not shown). 

As already mentioned we are interested in describing this 

system with CQMOM and therefore it is important to 

discuss how the NDF is represented (or reconstructed) 

with this methods.  

Figure 4: Snapshot of the bubble population after 30s, 

when the steady state is reached. 

A schematic representation is reported in Fig. 5. As it is 

seen the population of bubbles is presented by a limited 

(six in this case) number of bubble classes. These bubble 

classes are characterized by certain nodes, namely some 

size and oxygen concentration values, and by certain 

weights, namely the number density of bubbles with these 

node values. This corresponds to the mathematical 

representation of the NDF as a summation of (six) Dirac 

delta functions, as reported in Eq. (4). 

Once could think that this representation is very crude and 

that therefore the evolution of the population of bubbles 

would be poorly predicted by CQMOM. However, since 

these bubble classes are placed on nodes of quadrature 

approximations, the accuracy of the method turns out to be 

very high.  

This is demonstrated in Fig. 6 where the evolution of some 

mixed moments of the NDF as predicted by DSMC and 

CQMOM is compared. DSMC predictions are affected by 

a small statistical noise (black line) whereas CQMOM 

being a fully deterministic method does not contain any 

statistical noise (red line). 

The moments here reported represent important physical 

properties of the bubbles. For example M0,0 represents the 

total number bubble density, whereas M2,0 is related via 

the surface shape factor) to the specific surface area of the 

bubbles. M3,0 is related (via the volume shape factor) to 

the gas bubble volume fraction and M0,1 represents to total 

oxygen (within the bubbles) per unit volume of the 

multiphase systems. The average oxygen bubble 

concentration can be calculated from the ratio between 

M0,1 and M3,0.    
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Figure 5: Comparison of the representation of the bubble 

population with DSMC (colored circles) and CQMOM 

(white circles). 

Figure 6: Comparison between Monte Carlo (black line) 

and CQMOM (red line) simulation in terms of time 

evolution of certain moments of the bubble population. 

The evolution of the moments reveals the prevailing of 

coalescence over break up (i.e. M0,0 decreases), the 

presence of mass transfer, that causes first an oxygen 

depletion in the gas phase, resulting in a reduction of both 

gas volume fraction (i.e. M3,0) and total oxygen 

concentration (i.e. M0,1), followed by an increase when the 

liquid is saturated. 

As far as the comparison is concerned it is interesting to 

notice that CQMOM and DSMC results in very similar 

predictions. Errors calculated with DSMC (with multiple 

repetitions to reduce the statistical noise) as a reference 

resulted in overall integral errors of 5-15 % when using 

bivariate quadrature approximations with a number of 

nodes ranging from two to eight (N1 = 2, 3, 4 and N2 = 1, 

2). 

These very small errors come with the great advantage of 

reducing significantly the computational time. In fact, if in 

DSMC it is required to track the evolution of 10000 

notational bubbles for 10 realizations, resulting in a CPU 

time (serial simulation) of two days (on a standard  Intel 

Xeon X5650 2.67GHz  machine), CQMOM requires the 

solution of a small moment set (from six to 20 for the 

abovementioned cases), resulting in CPU time of seconds. 

One last important issue concerns the so-called quadrature 

realizability. In fact, the quadrature approximation is 

reconstructed from the moments with specific algorithms 

and for bivariate problems there is no assurance that the 

nodes are realizable, meaning that they assume allowed 

and reasonable values (and therefore they sample sensible 

regions of the internal coordinate space). 

One trivial requirement is that both bubble size and 

concentration nodes are positive. Additional constraints 

refer to the necessity of respecting physical behaviours. 

For example, in the case of no mass transfer and uniform 

inlet bubble oxygen concentration, the nodes for oxygen 

context (or concentration) have to stay constant, since no 

oxygen is transferring from one phase to the other. 

Our simulations show that this additional condition is 

respected only when M2,1 is included in the moment set, 

therefore at least three nodes for size (N1 = 3) must be 

used.   

Spatially (three-dimensional) inhomogeneous 

simulations 

As already mentioned CQMOM was also implemented in 

OpenFoam (compressibleTwoPhaseEulerFoam solver) 

to simulated the bubble column experimentally 

investigated by Diaz et al. (2008). Figure 7 reports the 

contour plot of the gas volume fraction at two different 

instants. As it is seen the bubble plume oscillates, due to 

fluid dynamic instabilities. It is interesting to observe that 

in our simulations this oscillation starts after about 10 

seconds from the beginning of the simulation, in 

accordance with what reported in the work of Diaz et al. 

(2008). Preliminary results show that the frequency of 

these oscillations (at different operating conditions) is in 

accordance with experiments. 

As already reported CQMOM allows to simulate the 

evolution of the NDF describing the polydispersity of the 

bubbles both in terms of their size and oxygen content.  

Figure 8 reports (for a simulation under the absence of 

mass transfer) a snapshot taken from the evolution of the 

mean bubble size, calculated as the ratio between M3,0 and 

M2,0 (i.e. Sauter bubble diameter).   

As it is seen, as soon as bubbles enter the domain, they are 

broken up by the sudden acceleration due to the buoyancy 

force. Then coalescence occurs in the upper part of the 

column on the wake of the plume, where bubbles tend to 

accumulate. 

Moment transport equations are solved within OpenFoam 

with first-order upwind spatial discretization schemes. In 

fact, the use of standard higher-order schemes corrupt the 

moment set hindering the convergence of the simulation. 

CONCLUSION 

In this work CQMOM and DSMC predictions are 

compared and results show that CQMOM is an accurate 

tool for the simulation of bivariate PBE for gas-liquid 

systems. In particular, extensive validation carried out 

with realistic kernels and mass transfer rates, have shown 

that the quadrature formula well approximate the moment 

source terms. Particular attention should be paid on the 

moment set to be tracked, since only when some moments 

are included in the moment set the resulting quadrature is 

realizable. CQMOM was successfully implemented in 

opeanFoam,  allowing the investigation of a bubble 
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column for which experiments are available for model 
validation. The next steps of our work involves the 
extensive validation of with experiments and the 
implementation of hybrid higher-order schemes that 
preserve the validity of the moment set. 

Figure 7: Contour plots of the gas volume fraction in the 
investigated bubble column at 20 and 25 seconds. 

Figure 8: Preliminary result for the mean bubble size (m) 
on the right, together with the gas volume fraction on the 
left, at 30 seconds from the beginning of the simulation. 
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