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ABSTRACT

Direct simulations of solid particles settling in a
Newtonian liquid have been performed. The partialese
given an attractive interaction potential which mabdem
aggregate and settle faster. The lattice-Boltzmaathaoad
was used to solve the liquid flow in between théarmly
sized spherical particles. An immersed boundaryhouet
was applied to impose no-slip at the surfaces @&f th
spheres that are free to move and rotate under the
influence of net gravity, resolved hydrodynamiccfs,
collisions and their interaction potential. Solidslume
fractions were in the range 0.12 — 0.32, and Reynold
numbers (based on average superficial slip velpeignt

up to order 50. Drag reduction due to aggregatias h
been correlated with average aggregate size. This
correlation is strongly influenced by the Reynoldsnber

and the overall solids volume fraction.

NOMENCLATURE

a sphere radius

Cp drag coefficient

Eswp depth of square well potential
restitution coefficient
dimensionless drag force

force vector

body force (force per unit volume) vector
gravitational acceleration vector
L,W domain dimensions

m, particle mass

n..(n,) (average) aggregate size

p(ny) aggregate size distribution

Re Reynolds number

t time

U, (single sphere) settling velocity
average slip velocity

u fluid velocity vector

particle velocity vector

lattice spacing

escape velocity of square well potential
time step

width of square well potential
friction coefficient

v kinematic viscosity

p,pp,ﬁ density (liquid, particle, mixture)

4

Q T 7o

solids volume fraction
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INTRODUCTION

Solid particles settling in liquid under the infhee of
gravity is a topic of research with a long and ricddition
(Stokes, 1901; Richardson & Zaki, 1954; Batchelor,
1972), continuing interest (Ladd, 2002; Guazzelli &
Hinch, 2011), and significant practical relevandée
latter not only because of its application for giabased
separation, but also in view of fluidization which a
common operation for a variety of industrial pramEs
involving fluid-solid contacting and mixing. For sih
particles settling in liquids with high viscositjesettling
rates get very low which often impedes achievingdjo
process efficiency. One way to enhance settlingsrat to
promote aggregation (“flocculation”) of the parésl so
that they form aggregates that fall faster throtighliquid
than the primary particles. Flocculation is usualthieved

by adding chemicals (flocculants) to the solid-ldju
suspension.

The efficiency of a flocculation process dependstlom
strength and reach of the attractive interparfiatees that
bring about aggregation. It also depends on the
hydrodynamic conditions, even if the solids setti®@ugh

a quiescent liquid. For aggregation to happen,ighast
need to have non-zero relative velocities so tb#ison
can occur after which particles potentially sticigeéther.

If, as is the case for the research presented liee,
primary particles are big enough not to undergovBrian
motion, relative velocities between particles dre tesult

of different settling velocities for differentlyz@d particles
(and/or differently sized aggregates), and of the
randomness of the particle configuration that matkes
direct environment of each particle different arfdist
affects its settling velocity.

Relative velocities amongst solids and betweerd fand
solid not only promote flocculation, they also pid®/
mechanisms for breaking aggregates. Breakage cémebe
result of hydrodynamic stresses induced by liquid
deformation around the aggregates, or the result of
collisions that are energetic enough to break bonds
between primary particles thereby destabilizing
aggregates.

This paper focuses on the interplay between aitraetnd
subsequent aggregation of particles and the dismutf

the aggregation process as a result of hydrodynamic
effects and collisions. The only driving force fwlids as
well as fluid motion considered here is gravity time
presence of a density difference between fluid sold.
The means of investigation is numerical simulatigith

full resolution of the flow and the solid partiaieotion. It
allows us to carefully control the solid-liquid sgms. The



solids in the simulations are spheres all havirg dame
size (radiusa) and density; the spheres will be referred to
as primary particles to clearly distinguish thenonfr
aggregates. The liquid is Newtonian with uniforrmsigy
and viscosity. The spheres are attracted to onthanas
the result of a square-well potential (Smith et1897).
This is a simple, two-parameter model (well widihda
well depth) for attractive interaction.

The goal of this paper is to reveal the interpldy o
phenomena (fluid flow, collisions, interaction patial)
that lead to aggregation and breakage and thusnto a
aggregate size distribution, and to quantify thbagced
settling of the aggregating suspension. More sizedlif,

we wish to assess what strength of attractionggired to
significantly increase settling velocities and hdhis
required strength would depend on the key dimeffesssn
parameters of the suspension: solids volume fraciiod
Reynolds number(s).

FLOW SYSTEM

We consider fully periodic, three-dimensional domsaof
length L in the x-direction, and widthW in y and z
direction. Gravity points in the negative-direction:
g=-ge,. The domains contain incompressible
Newtonian liquid (densityp , kinematic viscosity ) and
uniformly sized solid spherical particles with nasla and
density p,. The overall solids volume fraction is

recognized asp. Each sphere experiences a net gravity
_\ 4 N

force F, = —(pp —p)grzzfgex . with p=gp, +(1-¢)p

the mixture density. In order to balance forcesrahe

periodic domain we apply a uniform body force agtin

the positive x-direction f =(p-p)ge, (Derksen &

Sundaresan, 2007).

The average hydrodynamic force acting on a sphere
follows from a force balance over the liquid:

F, =fgna3(&—1]ex. Note that this equation expresses
4

the convention for the drag force as e.g. exprebgedan
der Hoef et al (2005) among others (Yin & Sundaresa
2009; Beetstra et al, 2007). The total averageefbscthe
fluid on a sphereF,_; then is the sum off, and a

contribution from the body forceF,  =F, +f4?”a3. It
can be verified thaf, ,=F, /(1-¢) . The hydrodynamic

force is usually partitioned into several composendtag
force, added mass force, history force, etc. Ifagsume
that ¢ is uniform throughout the domain , théf) is an

input parameter to the simulations. The overalliltesf a
simulation then is the volume-average superficigh s
velocity between liquid and particles:

U E(l—¢)[<u>—<up>} with (u) the x-velocity averaged

over the fluid volume ano(up> the x-velocity averaged

over the particle volume. In what follows, overadbults
will be mostly presented in terms dfand in terms of the
x-component of F, made dimensionless according to

F, & . .
F=—" > In this way we can relate to the extensive
6rravpJ
body of research that uses this representation to
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characterize hydrodynamic forces in (dense) suspess
(e.g. Wylie et al, 2003; Kandhai et al, 2003; Vam Hoef
et al, 2005). We expect the dimensionless fétde be a
function of Re=U /v, the solids volume fractionp,

and the strength of the interparticle interactitres bring
about aggregation.

In addition to the Reynolds number as defined abose
also use a Reynolds number based on the steady stat
settling velocity of a single sphere in an unbouhtleid:

Re, =U_2a/v, where U, is determined by a force
balance over the sphere falling through the liguidthis
force balance the drag force correlation given bil&r

& Naumann (1933) is used:

C, =24(1+ 0.15R§687)/ Re. In contrast to ReRe, is

an input parameter to the simulations.

The spheres directly interact via a square-welleptil
(Smith et al, 1997) that serves as the model mésimaior
aggregation. If two spherésandj approach one another

and reach a center-to-center distam(a+ 5) , they enter

the square well and are considered ‘attached’. hat t
moment, an amount) is added instantaneously to the
relative radial approach velocity of the two splsere

_ 1 _ 1

U, =uy +EJn, U, =uy ——2Jn (1)
with u,,u, sphere velocities just before entry, and
G,,0, just after entry of the SqwP, and

J= (Auij Dh)z +(2au)* +Au, h. The unit vectorn

points from the center of sphearéo the center of spheje
Au; =u, —u,, and Au is the parameter defining the
strength of the SqQWP (see below). Note that for two
approaching spheresAu; h<0 and thus J=0 if

Au=0 (zero momentum addition if the strength of the
SQWP is zero).

In energy terms the above implies that upon engetfire
square well, potential energy is converted in kinehergy

by a total amount ZEW:Z[%mp(Au)ZJ (with

m, :gwpeﬁ the mass of one sphere). Since there are

two spheres involved in the process, on averagé eac
sphere gainsk,,, kinetic energy. Once in each other's

square well the spheres keep moving under theendle

of hydrodynamic forces and likely undergo one ormreno
hard-sphere collisions according to the two-paramet
model (restitution coefficierg and friction coefficienty )
proposed by Yamamoto et al (2001).

If two attached spheres move apart and reach tge efl
the SqQWP - i.e. have a center-to-center distance of
2(a+5) - they need sufficient kinetic energy to escape

the SqQWP: they need a relative radial separatidocitg
Au, [h (when the spheres are separating this inner product

is positive) of at least?Au . If they are able to escape,
kinetic energy is converted back to potential epergon
escaping. If they are not able to escape they sevifreir
relative radial velocity at the moment they redsh ¢dge

of the square well and stay attached. The squalle-we
potential is thus defined by two parameters: itdtwio



and its energyE,, . Rather than working with the energy,

we will be working with Au in the remainder of this
paper. As indicated, the two are related accordimg

Swp

E :%mp (au)’.

This leaves us with four parameters governing titas
opposed to hydrodynamic) particle-particle inteaeg. In
dimensionless terms these are the collision paemet
(restitution coefficient) andu (friction coefficient), and

the square-well potential parametedga, and Au/U,, .

In this study we restrict ourselves to fully elasénd
smooth (frictionless) collisions so thatl and ¢ =0.

MODELING APPROACH

We use the lattice-Boltzmann (LB) method (Chen &
Doolen, 1998; Succi, 2001) to solve for the flowligtiid

in between the spheres. The method has a unifarhic ¢
grid (grid spacind@d). The specific scheme employed here
is due to Somers (1993). The no-slip condition reg t
spheres’ surfaces was dealt with by means of arensed
boundary (or forcing) method (Goldstein et al, 1998n
Cate et al, 2002). In this method, the sphere sarfa
defined as a set of closely spaced points (theca&ypi
spacing between points is Q)7 not coinciding with
lattice points. At these points, the (interpolatetljid
velocity is forced to the local velocity of the sbburface
according to a control algorithm. The local soligface
velocity has contributions from translational anthational
motion of the sphere under consideration. Adding up
(discrete integration) per spherical particle of florces
needed to maintain no-slip provides us with the(mite;
action equals minus reaction) force the fluid exen the
spherical particle. Similarly the hydrodynamic toeq
exerted on the particles can be determined. Foaoes
torques are subsequently used to update the liaedr
rotational equations of motion of each sphericaliga.

It should be noted that having a spherical partamtea
cubic grid requires a calibration step, as earbatized by
Ladd (1994). He introduced the concept of a
hydrodynamic radius. The calibration involves phacia
sphere with a given radiug, in a fully periodic cubic

domain in creeping flow and (computationally) measy

its drag force. The hydrodynamic radasf that sphere is
the radius for which the measured drag force cpoeds

to the expression for the drag force on a simphaccarray

of spheres given by Sangani & Acrivos (1982) . Ulgua

is slightly larger thana, with a—a, typically equal to
half a lattice spacing or less. The simulationsenéed in
this paper have a resolution such that 6A . In previous
studies (e.g. Derksen & Sundaresan, 2007) we have
confirmed (through grid refinement studies) thas ik an
appropriate resolution for particle-based Reynolds
numbers up to order 50.

Once the spatial resolution is fixed, the temporal
resolution of the LB simulations goes via the ckaif the
kinematic viscosityv . The kinematic viscosities varied
between 0.02 and 0.005 in lattice units (space igndf,
time unit is one time stepht) so that for the default

resolution (@=6A) the viscous time scalea®/v

corresponds to 1800 to 7200. The convective time
scalea/U,, is in the range of 200 to 6@9 .
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The viscosity is determined by the value for
Re,=U_2a/v we want to achieve in a specific

simulation and by the desire to keep fluid velaestivell
below the speed of sound of the (compressiblejcéatt
Boltzmann scheme to achieve  approximately

incompressible flow. If we setl, to a value of0(0.03)

the flow is practically incompressible. Onaev and U,

have been set, the value for gravitational accedera is
determined so as to actually achieveU, :
2
g =§CD P_Ye i C,(Re,) based on the
8 "p,-pa
Schiller-Naumann correlation.
The fixed-grid simulations involving moderately den
suspensions as discussed here require explicitsioel of
sub-grid lubrication forces for which we follow the
procedure suggested by Nguyen & Ladd (2002).
The spheres’ equations of linear and rotationalionot
including resolved and unresolved (i.e. lubrica}itorces
are integrated according to an Euler forward method
These time-step driven updates are linked with ante
driven algorithm that detects events related toSQgvVP
and to hard-sphere collisions during the Euler tgteps.
Three types of events can be distinguished: (1pf-h
sphere collision; (2) two approaching spheres eoter
another’'s SQWP; (3) two spheres that move apadhrea

center-to-center distance Q(a+5) and attempt to leave

one another's SqWP. Event (3) has two possible
outcomes: the spheres detach (if their separagtagive
velocity is sufficiently high), or do not detachn€ an
event is being detected, all particles are frozed the
event is carried out which for all three event typaplies

an update of the linear velocities (and also amgula
velocities for event type (1) ifz#0) of the two spheres
involved in the event. Subsequently all spheredicoa
moving until the end of the time step, or until thext
event, whatever comes first.

The initial condition is a domain that containsigand
liquid at rest and the (non-overlapping) spheresloaly
distributed in the domain. Then gravity is switched
while Au=0 (inactive SQWP) and the system is evolved to
a dynamically stationary state. Once this state b&en
reached, the strength of the SqWB is set to its desired
value and we let the solid-liquid system adapffiteethis
new condition.

DIMENSIONLESS PARAMETERS

Table 1 summarizes the non-dimensional input paense
fully defining the simulations. It also shows which
parameters have been sefit®d values, which parameters
have a default value the effect of which has been
investigated for a few cases, and which paramétave
beenvaried independently (the table then shows the range
of variation). As can be seen, we cover part ohrad-
dimensional parameter space with independentlyedari
coordinatesp, Re,, andAu/U,, .

Note that a Stokes number can be defined by compini
Re and the (in this study constant) density ra]zigp to

St=2& Re.
9 p



parameter | description status| value
/range
) solids volume fraction| varied 0.12
0.32
Re, single particle settling | varied 6-72
Reynolds number
P/ P density ratio fixed 4.0
Au/U,, SqWP escape velocity varied 0.005
over settling velocity -
0.030
d/a SqWP width over fixed 0.025
sphere radiua
e restitution coefficient fixed 1.0
H friction coefficient fixed 0.0
L/a domain length ovea | default | 48
L/W domain length over | fixed 2
domain width

Table 1: Dimensionless input parameters defining the
simulation cases and their settings

RESULTS

Impressions of Aggregating Systems

We begin by presenting some qualitative results.aAs
metric for the level of aggregation, the averagmier of
sphere-sphere contacts per sphegg, (), i.e. the number

of spheres that are within a center-to-center déstaof
2(a+5) of a certain test sphere, is considered. In Figure

1 we show time series o, . At momentt=0, when the

non-aggregating suspension is in a stationary ,sthte
square-well potential is switched on, i.e. we skvifcom
Au =0 to the values as indicated in the figure. Tisailtds
an increase irC_, to an extent that clearly depends on the

strength of the potential. With respect to soliddume
fraction ¢ and single-sphere-settling Reynolds number

Re,, the level of aggregation follows to-be-expected

trends: denser systems aggregate more, whereasottee
vigorous motion and higher (liquid and solids) tieeand
associated collision for the higher Reynolds nursitienit
aggregation levels. Impressions of sphere configura

for some cases are given in Figure 2. From thisréighe
size of the simulation domains and the aggregate
structures being formed can be gauged.

For ¢=0.32 (the lower panels in Figure 1) and

%20.020 aggregation gets so strong that eventually a

very large aggregate forms that contains almogiratiary
spheres and has a size of the order of the donmn s
some of these cases (see Figure 1) a steady stauat i
reached within time200a/U,, . In such situations and
given the fully periodic boundary conditions thagle,
large aggregate interacts with itself and the isgttl
velocity and drag force results are not represiamatdor
large, homogeneous systems anymore. For this reason
aggregating systems witlp=0.32 will not be discussed
further.
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Figure 1. Time series of the number of contact points per
sphere C,,. Top row: ¢=0.12; middle row: ¢=0.20;
bottom row: =0.32. Left column: Re,=6; center
column: Re,=12; right column: Re,=48. Black:
Au/U,, =0; blue: Au/U, =0.01; red:Au/U,, =0.02; green:
Au/U, =0.03. Att=0 Au switches from zero to the
indicated non-zero values.

The square-well potential and consequential floaibo
clearly enhances the settling rates, see Figui@&.more
remarkable feature of the results in this figurehiat the
enhancement of settling is a very strong functibrRe, .

For the higherRe, (and thus higher Stokes numbers; note

that the density ratio is constant in this work)ertia
promotes collisions that potentially break aggregaind
keeps the spheres less attached. The result imewdtat
more uniform distribution of particles with quiteadtic
consequences for the settling rates.

Figure 2: Single realizations of sphere positions under
stationary conditions. Top rowp=0.12; bottom row
@=0.20. Left Re, =6 and Au/U, =0; middle: Re, =6
and Au/U,_, =0.03; right Re, =48 and Au/U,, =0.03. Red
are single spheres, green spheres are part of etsubl

yellow spheres are part of triplets, and blue sphare in
aggregates of four or more primary spheres.
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Figure 3: Time series of sphere-averaged slip velotlty
normalized withU_. Top row: ¢=0.12; bottom row:
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tu,/a

@=0.20. Left column:Re, =6; center columnRe, =12;
right column: Re,=48. Black: Au/U, =0; blue:
Au/U,, =0.01; red:Au/U,, =0.02; green:Au/U,, =0.03.

Drag in Aggregating Systems

Aggregate size distributions (ASD’s) were deterrdine
based on a large number of realizations of theeagding
solid-liquid systems after they reached a dynarteady
state. Examples of mass-weighted ASD’s are pregante

Figure 4. In this figure,p(n,) is the fraction of the total
solids mass in the system contained in aggregates
consisting of n, primary spheres. Figure 4 shows that a

stronger interaction potential shifts the ASD’she right,
i.e. to (on average) larger aggregates. Given éfi@iton

of p(n), the mass-averaged aggregate size is
(n)= » n,p(n,) with N the number of primary spheres
ny=l

in the entire flow system\(is the absolute upper limit of
n,). In Figure 5 mass averaged aggregate sizesiae g
as a function of the three independent input vieglp,
Re,, and Au/U,, .

10°

10"

10*
0

100 200

n
Figure 4: Aggregate size distriabutions fop=0.20 and
Re, =12. Blue: Au/U,, =0.01; red: Au/U,, =0.02; green:
Au/U, =0.03. The averages
(n,) =4.88, 11.9, and 59.4 respectively. The total numbe

of particles in each case is 1320. The ASD’s asethan
600 realizations after steady state was reachelues
below 10* have been set to T0(for plotting purposes

only).

mass-weighted are
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As expected, there is a clear positive correlabietween
aggregate size and interaction potential strengthsalids
volume fraction. A slightly less obvious observatis that
higher Re, (i.e. an increase of inertia) drastically brings

down average aggregate sizes. The reason forffaet &
that inertia promotes the number and intensityasfiple-
particle collisions that tend to destabilize andeair
aggregates, thereby shifting the size distributiowards
smaller aggregates. It should be noted that thatsefor

¢=0.25 and % > 0.025 likely are affected by the finite
domain size, given that the mass-averaged aggregas
(order a few hundred) are a significant fractiorthaf total
number of spheres (1645) in these simulations abahly

a few large aggregates can coexist at one momeimén

In Figure 6 the consequences of aggregation fodthg
force are summarized. We show the average drag on a
primary sphere under different aggregation condgtio

15
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Figure 5: Mass-average aggregate s(zg) as a function

of suspension properties.

The drag per primary sphere reduces most for therlo
Reynolds numbers which (see Figure 5) aggregate. mos
There is, however, no one-on-one relation between
aggregate size and drag reduction. (1) Although the
amount of drag reduction for simulations with=0.12

and ¢=0.25 are comparable, the aggregates in the latter
cases are more than one order of magnitude langerin

the former. (2) Aggregates are being formed forttigher
Reynolds numbers. Drag, however, is only marginally
reduced in these cases.

SUMMARY

Simulations of flocculating solids settling througiuid
were presented with the aim to quantify the pempri-
particle reduction of the average drag force assalt of
the aggregation process. The simulations explicitly
resolved the no-slip conditions at solid particlefaces,
the flow of interstitial liquid and the solid-paite
dynamics, including hard-sphere collisions. Thedtarty
to aggregate was derived from providing the sphéric
particles with an attractive square-well interactio
potential. Minimal modeling was required: a radial
lubrication force was added to the particles’ empnat of



motion to compensate for the lack of resolution mhe
particle surfaces come very close, and a hydrodigiam
radius calibration was applied to account for acti$
related to representing spherical surfaces on dccub
lattice.
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Figure 6: Dimensionless drag force per primary sphere
(F) as a function of Re for four different solids wole
fraction ¢ and SqQWP strengthu (relative toU ).

Settling rates clearly increase if the particlegragate.
These increased rates have been interpreted irs tefm
per-sphere drag reduction. For given overall solimlsme
fraction, the per-sphere drag reduction mainly delgeon
the strength of the interaction potential and anldvel of
inertia present in the system (as a metric forldtter the
single-sphere settling Reynolds numtiee, was chosen).

The effect of inertia could be traced back to thgragate
sizes that are much smaller for highRe, as a result of

enhanced collision rates that destabilize largeecgdes.
Future work will focus on a better understanding arore
universal ways to describe and possibly predictaenbd
settling through aggregation as a function of thput
parameters (solids volume fraction, Reynolds nusyber
interaction strength). In addition, the sensitivity the
results with respect to the specifics of the inttoa
potential needs to be tested. One way to apprdashstto
mimic experimentally observed potentials and sitsula
systems that are amenable to experimental testimgn a
more practical standpoint we plan in the simulatida
include the transport of a flocculant (e.g. a paynin the
suspension and make the interaction potential digen
on its local concentration. In dense suspensiores th

spreading of a scalar through the liquid phase is a

significant mixing problem and a rate limiting stegarge
scale flocculation processes.
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