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ABSTRACT 

Direct simulations of solid particles settling in a 
Newtonian liquid have been performed. The particles were 
given an attractive interaction potential which made them 
aggregate and settle faster. The lattice-Boltzmann method 
was used to solve the liquid flow in between the uniformly 
sized spherical particles. An immersed boundary method 
was applied to impose no-slip at the surfaces of the 
spheres that are free to move and rotate under the 
influence of net gravity, resolved hydrodynamic forces, 
collisions and their interaction potential. Solids volume 
fractions were in the range 0.12 – 0.32, and Reynolds 
numbers (based on average superficial slip velocity) went 
up to order 50. Drag reduction due to aggregation has 
been correlated with average aggregate size. This 
correlation is strongly influenced by the Reynolds number 
and the overall solids volume fraction. 

NOMENCLATURE 

a sphere radius 
CD drag coefficient 
Eswp depth of square well potential 
e restitution coefficient 
F dimensionless drag force 
F force vector 
f body force (force per unit volume) vector 
g gravitational acceleration vector 
L,W domain dimensions 
mp  particle mass 

,a an n  (average) aggregate size 

p(na) aggregate size distribution 
Re Reynolds number 
t time 
U∞ (single sphere) settling velocity 
U average slip velocity 
u fluid velocity vector 
up particle velocity vector 
∆ lattice spacing 
∆u escape velocity of square well potential 
∆t time step 
δ width of square well potential 
µ friction coefficient 
ν kinematic viscosity 

, ,pρ ρ ρ  density (liquid, particle, mixture) 

φ solids volume fraction 

INTRODUCTION 

Solid particles settling in liquid under the influence of 
gravity is a topic of research with a long and rich tradition 
(Stokes, 1901; Richardson & Zaki, 1954; Batchelor, 
1972), continuing interest (Ladd, 2002; Guazzelli & 
Hinch, 2011), and significant practical relevance. The 
latter not only because of its application for gravity-based 
separation, but also in view of fluidization which is a 
common operation for a variety of industrial processes 
involving fluid-solid contacting and mixing. For small 
particles settling in liquids with high viscosities, settling 
rates get very low which often impedes achieving good 
process efficiency. One way to enhance settling rates is to 
promote aggregation (“flocculation”) of the particles so 
that they form aggregates that fall faster through the liquid 
than the primary particles. Flocculation is usually achieved 
by adding chemicals (flocculants) to the solid-liquid 
suspension. 
The efficiency of a flocculation process depends on the 
strength and reach of the attractive interparticle forces that 
bring about aggregation. It also depends on the 
hydrodynamic conditions, even if the solids settle through 
a quiescent liquid. For aggregation to happen, particles 
need to have non-zero relative velocities so that collision 
can occur after which particles potentially stick together. 
If, as is the case for the research presented here, the 
primary particles are big enough not to undergo Brownian 
motion, relative velocities between particles are the result 
of different settling velocities for differently sized particles 
(and/or differently sized aggregates), and of the 
randomness of the particle configuration that makes the 
direct environment of each particle different and thus 
affects its settling velocity.  
Relative velocities amongst solids and between fluid and 
solid not only promote flocculation, they also provide 
mechanisms for breaking aggregates. Breakage can be the 
result of hydrodynamic stresses induced by liquid 
deformation around the aggregates, or the result of 
collisions that are energetic enough to break bonds 
between primary particles thereby destabilizing 
aggregates. 
This paper focuses on the interplay between attraction and 
subsequent aggregation of particles and the disruption of 
the aggregation process as a result of hydrodynamic 
effects and collisions. The only driving force for solids as 
well as fluid motion considered here is gravity in the 
presence of a density difference between fluid and solid. 
The means of investigation is numerical simulation with 
full resolution of the flow and the solid particle motion. It 
allows us to carefully control the solid-liquid systems. The 
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solids in the simulations are spheres all having the same 
size (radius a) and density; the spheres will be referred to 
as primary particles to clearly distinguish them from 
aggregates. The liquid is Newtonian with uniform density 
and viscosity. The spheres are attracted to one another as 
the result of a square-well potential (Smith et al, 1997). 
This is a simple, two-parameter model (well width and 
well depth) for attractive interaction. 
The goal of this paper is to reveal the interplay of 
phenomena (fluid flow, collisions, interaction potential) 
that lead to aggregation and breakage and thus to an 
aggregate size distribution, and to quantify the enhanced 
settling of the aggregating suspension. More specifically, 
we wish to assess what strength of attraction is required to 
significantly increase settling velocities and how this 
required strength would depend on the key dimensionless 
parameters of the suspension: solids volume fraction and 
Reynolds number(s). 

FLOW SYSTEM 

We consider fully periodic, three-dimensional domains of 
length L  in the x-direction, and width W in y and z-
direction. Gravity points in the negative x-direction: 

g= − xg e . The domains contain incompressible 

Newtonian liquid (density ρ , kinematic viscosity ν ) and 
uniformly sized solid spherical particles with radius a and 
density pρ . The overall solids volume fraction is 

recognized as φ . Each sphere experiences a net gravity 

force ( ) 34

3p a gρ ρ π= − −g xF e , with ( )1pρ φρ φ ρ= + −  

the mixture density. In order to balance forces over the 
periodic domain we apply a uniform body force acting in 
the positive x-direction ( ) gρ ρ= − xf e  (Derksen & 

Sundaresan, 2007). 
The average hydrodynamic force acting on a sphere 
follows from a force balance over the liquid: 

34 1
1

3
aπ

φ
 

= − 
 

h xF f e . Note that this equation expresses 

the convention for the drag force as e.g. expressed by Van 
der Hoef et al (2005) among others (Yin & Sundaresan, 
2009; Beetstra et al, 2007). The total average force by the 
fluid on a sphere →f sF  then is the sum of hF  and a 

contribution from the body force: 34

3
a

π
→ = +f s hF F f . It 

can be verified that ( )1 φ→ = −f s hF F . The hydrodynamic 

force is usually partitioned into several components: drag 
force, added mass force, history force, etc. If we assume 
that φ  is uniform throughout the domain , then hF  is an 

input parameter to the simulations. The overall result of a 
simulation then is the volume-average superficial slip 
velocity between liquid and particles: 

( )1 pU u uφ  ≡ − −
 

 with u  the x-velocity averaged 

over the fluid volume and pu  the x-velocity averaged 

over the particle volume. In what follows, overall results 
will be mostly presented in terms of U and in terms of the 
x-component of hF  made dimensionless according to 

6
F

a Uπ νρ
⋅≡ h xF e

. In this way we can relate to the extensive 

body of research that uses this representation to 

characterize hydrodynamic forces in (dense) suspensions 
(e.g. Wylie et al, 2003; Kandhai et al, 2003; Van der Hoef 
et al, 2005). We expect the dimensionless force F to be a 
function of Re 2U a ν≡ , the solids volume fraction φ , 

and the strength of the interparticle interactions that bring 
about aggregation.  
In addition to the Reynolds number as defined above, we 
also use a Reynolds number based on the steady state 
settling velocity of a single sphere in an unbounded fluid: 
Re 2U a ν∞ ∞≡ , where U∞  is determined by a force 

balance over the sphere falling through the liquid. In this 
force balance the drag force correlation given by Schiller 
& Naumann (1933) is used: 

( )0.68724 1 0.15Re ReDC ∞ ∞= + . In contrast to Re, Re∞  is 

an input parameter to the simulations. 
The spheres directly interact via a square-well potential 
(Smith et al, 1997) that serves as the model mechanism for 
aggregation. If two spheres i and j approach one another 
and reach a center-to-center distance ( )2 a δ+ , they enter 

the square well and are considered ‘attached’. At that 
moment, an amount J is added instantaneously to the 
relative radial approach velocity of the two spheres:  

 
1 1

,
2 2

J J= + = −pi pi pj pju u n u u n% %  (1) 

with ,pi pju u  sphere velocities just before entry, and 

,pi pju u% %  just after entry of the SqWP, and 

( ) ( )2 2
2J u= ⋅ + ∆ + ⋅ij ij∆u n ∆u n . The unit vector n 

points from the center of sphere i to the center of sphere j, 
≡ −ij pj pi∆u u u , and u∆  is the parameter defining the 

strength of the SqWP (see below). Note that for two 
approaching spheres 0⋅ <ij∆u n  and thus 0J =  if 

0u∆ =  (zero momentum addition if the strength of the 
SqWP is zero). 
In energy terms the above implies that upon entering the 
square well, potential energy is converted in kinetic energy 

by a total amount ( )21
2 2

2swp pE m u
 = ∆ 
 

 (with 

34

3p pm aπρ=  the mass of one sphere). Since there are 

two spheres involved in the process, on average each 
sphere gains swpE  kinetic energy. Once in each other’s 

square well the spheres keep moving under the influence 
of hydrodynamic forces and likely undergo one or more 
hard-sphere collisions according to the two-parameter 
model (restitution coefficient e and friction coefficient µ ) 
proposed by Yamamoto et al (2001).  
If two attached spheres move apart and reach the edge of 
the SqWP − i.e. have a center-to-center distance of 

( )2 a δ+ − they need sufficient kinetic energy to escape 

the SqWP: they need a relative radial separation velocity 
⋅ij∆u n (when the spheres are separating this inner product 

is positive) of at least 2 u∆ . If they are able to escape, 
kinetic energy is converted back to potential energy upon 
escaping. If they are not able to escape they reverse their 
relative radial velocity at the moment they reach the edge 
of the square well and stay attached. The square-well 
potential is thus defined by two parameters: its width δ  
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and its energy swpE . Rather than working with the energy, 

we will be working with u∆  in the remainder of this 
paper. As indicated, the two are related according to 

( )21

2swp pE m u= ∆ . 

This leaves us with four parameters governing direct (as 
opposed to hydrodynamic) particle-particle interactions. In 
dimensionless terms these are the collision parameters e 
(restitution coefficient) and µ  (friction coefficient), and 

the square-well potential parameters aδ , and u U∞∆ .  

In this study we restrict ourselves to fully elastic and 
smooth (frictionless) collisions so that e=1 and µ =0. 

MODELING APPROACH 

We use the lattice-Boltzmann (LB) method (Chen & 
Doolen, 1998; Succi, 2001) to solve for the flow of liquid 
in between the spheres. The method has a uniform, cubic 
grid (grid spacing ∆). The specific scheme employed here 
is due to Somers (1993). The no-slip condition at the 
spheres’ surfaces was dealt with by means of an immersed 
boundary (or forcing) method (Goldstein et al, 1993; Ten 
Cate et al, 2002). In this method, the sphere surface is 
defined as a set of closely spaced points (the typical 
spacing between points is 0.7∆), not coinciding with 
lattice points. At these points, the (interpolated) fluid 
velocity is forced to the local velocity of the solid surface 
according to a control algorithm. The local solid surface 
velocity has contributions from translational and rotational 
motion of the sphere under consideration. Adding up 
(discrete integration) per spherical particle of the forces 
needed to maintain no-slip provides us with the (opposite; 
action equals minus reaction) force the fluid exerts on the 
spherical particle. Similarly the hydrodynamic torque 
exerted on the particles can be determined. Forces and 
torques are subsequently used to update the linear and 
rotational equations of motion of each spherical particle.  
It should be noted that having a spherical particle on a 
cubic grid requires a calibration step, as earlier realized by 
Ladd (1994). He introduced the concept of a 
hydrodynamic radius. The calibration involves placing a 
sphere with a given radius ga  in a fully periodic cubic 

domain in creeping flow and (computationally) measuring 
its drag force. The hydrodynamic radius a of that sphere is 
the radius for which the measured drag force corresponds 
to the expression for the drag force on a simple cubic array 
of spheres given by Sangani & Acrivos (1982) . Usually a 
is slightly larger than ga  with ga a−  typically equal to 

half a lattice spacing or less. The simulations presented in 
this paper have a resolution such that 6a = ∆ . In previous 
studies (e.g. Derksen & Sundaresan, 2007) we have 
confirmed (through grid refinement studies) that this is an 
appropriate resolution for particle-based Reynolds 
numbers up to order 50. 

Once the spatial resolution is fixed, the temporal 
resolution of the LB simulations goes via the choice of the 
kinematic viscosity ν . The kinematic viscosities varied 
between 0.02 and 0.005 in lattice units (space unit is ∆ , 
time unit is one time step t∆ ) so that for the default 

resolution ( 6a = ∆ ) the viscous time scale 2a ν  

corresponds to 1800 to 7200t∆ . The convective time 
scale a U∞  is in the range of 200 to 600t∆ .  

The viscosity is determined by the value for 
Re 2U a ν∞ ∞≡  we want to achieve in a specific 

simulation and by the desire to keep fluid velocities well 
below the speed of sound of the (compressible) lattice-
Boltzmann scheme to achieve approximately 
incompressible flow. If we set U∞  to a value of ( )0.01O  

the flow is practically incompressible. Once a, ν  and U∞  

have been set, the value for gravitational acceleration g is 
determined so as to actually achieve U∞ : 

23

8 D

p

U
g C

a

ρ
ρ ρ

∞=
−

 with ( )ReDC ∞  based on the 

Schiller-Naumann correlation.   
The fixed-grid simulations involving moderately dense 
suspensions as discussed here require explicit inclusion of 
sub-grid lubrication forces for which we follow the 
procedure suggested by Nguyen & Ladd (2002).  
The spheres’ equations of linear and rotational motion 
including resolved and unresolved (i.e. lubrication) forces 
are integrated according to an Euler forward method. 
These time-step driven updates are linked with an event-
driven algorithm that detects events related to the SqWP 
and to hard-sphere collisions during the Euler time steps. 
Three types of events can be distinguished: (1) a hard-
sphere collision; (2) two approaching spheres enter one 
another’s SqWP; (3) two spheres that move apart reach a 
center-to-center distance of ( )2 a δ+  and attempt to leave 

one another’s SqWP. Event (3) has two possible 
outcomes: the spheres detach (if their separating relative 
velocity is sufficiently high), or do not detach. Once an 
event is being detected, all particles are frozen and the 
event is carried out which for all three event types implies 
an update of the linear velocities (and also angular 
velocities for event type (1) if 0µ ≠ ) of the two spheres 
involved in the event. Subsequently all spheres continue 
moving until the end of the time step, or until the next 
event, whatever comes first. 
The initial condition is a domain that contains solid and 
liquid at rest and the (non-overlapping) spheres randomly 
distributed in the domain. Then gravity is switched on 
while u∆ =0 (inactive SqWP) and the system is evolved to 
a dynamically stationary state. Once this state has been 
reached, the strength of the SqWP u∆  is set to its desired 
value and we let the solid-liquid system adapt itself to this 
new condition. 

DIMENSIONLESS PARAMETERS 

Table 1 summarizes the non-dimensional input parameters 
fully defining the simulations. It also shows which 
parameters have been set to fixed values, which parameters 
have a default value the effect of which has been 
investigated for a few cases, and which parameters have 
been varied independently (the table then shows the range 
of variation). As can be seen, we cover part of a three-
dimensional parameter space with independently varied 
coordinates φ , Re∞ , and u U∞∆ .  

Note that a Stokes number can be defined by combining 
Re and the (in this study constant) density ratio pρ ρ  to 

2
St Re

9
pρ

ρ
= .  
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parameter description status value 
/range 

φ  solids volume fraction varied 0.12 – 
0.32 

Re∞  single particle settling 
Reynolds number  

varied 6 – 72 

pρ ρ  density ratio fixed 4.0 

u U∞∆  SqWP escape velocity 
over settling velocity 

varied 0.005 
– 
0.030 

aδ  SqWP width over 
sphere radius a 

fixed 0.025 

e restitution coefficient fixed 1.0 
µ  friction coefficient fixed 0.0 
L a  domain length over a default 48 

L W  domain length over 
domain width 

fixed 2 

Table 1: Dimensionless input parameters defining the 
simulation cases and their settings 

RESULTS 

Impressions of Aggregating Systems 

We begin by presenting some qualitative results. As a 
metric for the level of aggregation, the average number of 
sphere-sphere contacts per sphere (sphC ), i.e. the number 

of spheres that are within a center-to-center distance of 

( )2 a δ+  of a certain test sphere, is considered. In Figure 

1 we show time series of sphC . At moment t=0, when the 

non-aggregating suspension is in a stationary state, the 
square-well potential is switched on, i.e. we switch from 

u∆ =0 to the values as indicated in the figure. The result is 
an increase in sphC  to an extent that clearly depends on the 

strength of the potential. With respect to solids volume 
fraction φ  and single-sphere-settling Reynolds number 

Re∞ , the level of aggregation follows to-be-expected 

trends: denser systems aggregate more, whereas the more 
vigorous motion and higher (liquid and solids) inertia and 
associated collision for the higher Reynolds numbers limit 
aggregation levels. Impressions of sphere configurations 
for some cases are given in Figure 2. From this figure the 
size of the simulation domains and the aggregate 
structures being formed can be gauged. 
For φ =0.32 (the lower panels in Figure 1) and 

0.020
u

U∞

∆ ≥  aggregation gets so strong that eventually a 

very large aggregate forms that contains almost all primary 
spheres and has a size of the order of the domain size. In 
some of these cases (see Figure 1) a steady state is not 
reached within time 200a U∞ .  In such situations and 

given the fully periodic boundary conditions the single, 
large aggregate interacts with itself and the settling 
velocity and drag force results are not representative for 
large, homogeneous systems anymore. For this reason, 
aggregating systems with φ =0.32 will not be discussed 
further. 
 

 
 
Figure 1: Time series of the number of contact points per 
sphere sphC . Top row: φ =0.12; middle row: φ =0.20; 

bottom row: φ =0.32. Left column: Re∞ =6; center 

column: Re∞ =12; right column: Re∞ =48. Black: 

u U∞∆ =0; blue: u U∞∆ =0.01; red: u U∞∆ =0.02; green: 

u U∞∆ =0.03. At t=0 u∆  switches from zero to the 

indicated non-zero values. 
 
The square-well potential and consequential flocculation 
clearly enhances the settling rates, see Figure 3. The more 
remarkable feature of the results in this figure is that the 
enhancement of settling is a very strong function of Re∞ . 

For the higher Re∞  (and thus higher Stokes numbers; note 

that the density ratio is constant in this work), inertia 
promotes collisions that potentially break aggregates and 
keeps the spheres less attached. The result is a somewhat 
more uniform distribution of particles with quite drastic 
consequences for the settling rates. 
 

 
Figure 2: Single realizations of sphere positions under 
stationary conditions. Top row φ =0.12; bottom row 

φ =0.20. Left Re∞ =6 and u U∞∆ =0; middle: Re∞ =6 

and u U∞∆ =0.03; right Re∞ =48 and u U∞∆ =0.03. Red 

are single spheres, green spheres are part of doublets, 
yellow spheres are part of triplets, and blue spheres are in 
aggregates of four or more primary spheres. 
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Figure 3: Time series of sphere-averaged slip velocity U 
normalized with U∞ . Top row: φ =0.12; bottom row: 

φ =0.20. Left column: Re∞ =6; center column: Re∞ =12; 

right column: Re∞ =48. Black: u U∞∆ =0; blue: 

u U∞∆ =0.01; red: u U∞∆ =0.02; green: u U∞∆ =0.03. 

 

Drag in Aggregating Systems 

Aggregate size distributions (ASD’s) were determined 
based on a large number of realizations of the aggregating 
solid-liquid systems after they reached a dynamic steady 
state. Examples of mass-weighted ASD’s are presented in 
Figure 4. In this figure, ( )ap n  is the fraction of the total 

solids mass in the system contained in aggregates 
consisting of an  primary spheres. Figure 4 shows that a 

stronger interaction potential shifts the ASD’s to the right, 
i.e. to (on average) larger aggregates. Given the definition 
of ( )ap n , the mass-averaged aggregate size is 

( )
1a

N

a a a
n

n n p n
=

≡ ∑  with N the number of primary spheres 

in the entire flow system (N is the absolute upper limit of 

an ).  In Figure 5 mass averaged aggregate sizes are given 

as a function of the three independent input variables φ , 

Re∞ , and u U∞∆ . 

 

 
Figure 4: Aggregate size distributions for φ =0.20 and 

Re∞ =12. Blue: u U∞∆ =0.01; red: u U∞∆ =0.02; green: 

u U∞∆ =0.03. The mass-weighted averages are 

an =4.88, 11.9, and 59.4 respectively. The total number 

of particles in each case is 1320. The ASD’s are based on 
600 realizations after steady state was reached. p-values 
below 10-4 have been set to 10-4 (for plotting purposes 
only). 
 

As expected, there is a clear positive correlation between 
aggregate size and interaction potential strength and solids 
volume fraction. A slightly less obvious observation is that 
higher Re∞  (i.e. an increase of inertia) drastically brings 

down average aggregate sizes. The reason for this effect is 
that inertia promotes the number and intensity of particle-
particle collisions that tend to destabilize and break 
aggregates, thereby shifting the size distribution towards 
smaller aggregates. It should be noted that the results for 

0.25φ =  and 0.025
u

U∞

∆ ≥  likely are affected by the finite 

domain size, given that the mass-averaged aggregate sizes 
(order a few hundred) are a significant fraction of the total 
number of spheres (1645) in these simulations so that only 
a few large aggregates can coexist at one moment in time.    
In Figure 6 the consequences of aggregation for the drag 
force are summarized. We show the average drag on a 
primary sphere under different aggregation conditions. 
 

 
Figure 5: Mass-average aggregate size an  as a function 

of suspension properties. 
 
The drag per primary sphere reduces most for the lower 
Reynolds numbers which (see Figure 5) aggregate most. 
There is, however, no one-on-one relation between 
aggregate size and drag reduction. (1) Although the 
amount of drag reduction for simulations with 0.12φ =  

and 0.25φ =  are comparable, the aggregates in the latter 
cases are more than one order of magnitude larger than in 
the former. (2) Aggregates are being formed for the higher 
Reynolds numbers. Drag, however, is only marginally 
reduced in these cases.  

SUMMARY 

Simulations of flocculating solids settling through liquid 
were presented with the aim to quantify the per-primary-
particle reduction of the average drag force as a result of 
the aggregation process. The simulations explicitly 
resolved the no-slip conditions at solid particle surfaces, 
the flow of interstitial liquid and the solid-particle 
dynamics, including hard-sphere collisions. The tendency 
to aggregate was derived from providing the spherical 
particles with an attractive square-well interaction 
potential. Minimal modeling was required: a radial 
lubrication force was added to the particles’ equations of 
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motion to compensate for the lack of resolution when 
particle surfaces come very close, and a hydrodynamic 
radius calibration was applied to account for artifacts 
related to representing spherical surfaces on a cubic 
lattice. 
 

 
Figure 6: Dimensionless drag force per primary sphere 
(F) as a function of Re for four different solids volume 
fraction φ  and SqWP strength u∆  (relative to U∞ ). 

 
Settling rates clearly increase if the particles aggregate. 
These increased rates have been interpreted in terms of 
per-sphere drag reduction. For given overall solids volume 
fraction, the per-sphere drag reduction mainly depends on 
the strength of the interaction potential and on the level of 
inertia present in the system (as a metric for the latter the 
single-sphere settling Reynolds number Re∞  was chosen). 

The effect of inertia could be traced back to the aggregate 
sizes that are much smaller for higher Re∞  as a result of 

enhanced collision rates that destabilize large aggregates.  
Future work will focus on a better understanding and more 
universal ways to describe and possibly predict enhanced 
settling through aggregation as a function of the input 
parameters (solids volume fraction, Reynolds numbers, 
interaction strength). In addition, the sensitivity of the 
results with respect to the specifics of the interaction 
potential needs to be tested. One way to approach this is to 
mimic experimentally observed potentials and simulate 
systems that are amenable to experimental testing. From a 
more practical standpoint we plan in the simulations to 
include the transport of a flocculant (e.g. a polymer) in the 
suspension and make the interaction potential dependent 
on its local concentration. In dense suspensions the 
spreading of a scalar through the liquid phase is a 
significant mixing problem and a rate limiting step in large 
scale flocculation processes. 
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