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ABSTRACT 

Accurate determination of the fluid flow within heap 
leaching is critical to understanding and improving 
performance of the process. Numerical methods have the 
potential to assist by modelling the process and studying 
the transport phenomena within the porous medium. This 
paper presents a numerical scheme to solve for unsaturated 
incompressible flow in porous media with applications to 
heap leaching. The classic Richard's equation is solved for 
the porous medium representing a heap. The numerical 
method is implemented in Fluidity (AMCG, 2012), an 
open source and general purpose finite element/volume 
model. It has the capability of solving a number of 
different governing equations for fluid flow and 
accompanying field equations on arbitrary unstructured 
meshes. A control volume finite element scheme is 
employed to simulate the two phase flow of air and 
leaching solution in the porous media. An implicit 
pressure explicit saturation formulation (IMPES) is used 
to decouple the pressure and saturation equations. Pressure 
is discretized using a control volume finite element 
method (CV-FEM) and saturation with a node centred 
control volume method. The model is verified by 
modelling the Buckley-Leverett problem where a quasi-
analytical solution is available. The method is applied to 
two phase flow of air and leaching solution in a simplified 
two dimensional heap geometry. We also demonstrate the 
potential to achieve high spatial accuracy at low 
computational cost through the use of the anisotropic mesh 
adaptivity.  

NOMENCLATURE 
dp diameter of particles 
K permeability 
ka absolute permeability 
kr relative permeability 
p pressure 
pc capillary pressure 
pe entry capillary pressure 
pnw non-wetting pressure 
pw wetting pressure 
S saturation 
Sn non-wetting saturation 
Sr residual saturation 
Sw wetting saturation 
t time 
td dimensionless time 
u velocity 

ut total velocity 
α pore size distribution index 
φ porosity 
µ viscosity 
ρ density 

INTRODUCTION 
Numerical modelling of multiphase flow in porous media 
is of great importance in many fields of engineering and 
sciences (Bear, 1988). Originally these models are based 
on the finite difference method (Aziz and Settari, 1986). 
However, finite difference methods typically lack the 
flexibility required to represent complex geometries and 
material properties of porous media and capture the 
multiscale evolving features associated with the flow in 
porous media. Unstructured finite volume/element 
methods are capable of capturing complex three 
dimensional geometries and can be combined with 
adaptive mesh methods to achieve high fidelity models. 
While the formulation and methods described in this paper 
can be generalized to different areas of transport in porous 
media, here we focus on the application of a control 
volume finite element scheme to simulate and analyse the 
transport of multiphase fluids in heap leaching.  
Heap leaching is one of the most important methods to 
extract metals such as copper, zinc, and gold from ores. It 
consists of two main processes: multiphase fluid flow in 
the heap and the physio-chemical reaction between the 
ores and the leaching solution. These two processes can be 
studied separately assuming that the reaction process does 
not affect the flow pattern (Cariaga et al., 2005).  The 
accurate simulation of the flow is of great importance 
since other aspects of the process, such as rate of reaction, 
depend highly on it. In addition, rapid and accurate 
numerical simulation of heap leaching phenomena is a 
cost effective method to design and optimize the 
operational processes and irrigation strategies. In this 
paper we focus on the numerical simulation of multiphase 
flow within a heap where the displacing phase is the 
leaching solution and the displaced phase is air. 
The governing equations for multiphase flow in porous 
media consist of Darcy's law along with the conservation 
of mass for each phase, which together form the classic 
Richard's equation. Different approaches have been 
applied to solve for flow in a heap leaching process. 
Munoz et al (1997) proposed a two dimensional 
mathematical model based on the finite difference 
discretization of Darcy's law and validated their results by 
comparing against a radial flow experiment. McBride et 
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al. (2012) applied a finite volume method to solve for the 
flow and modelled a gold oxide heap successfully. Cariaga 
et al. (2005) employed a mixed hybrid finite element 
approach to solve for liquid and air flow in a two 
dimensional pilot-scale heap. McBride et al (2006) gave a 
review on some common numerical techniques to solve 
for the flow in a heap leaching process. Furthermore, 
Mellado et al. (2009) proposed an analytical approach 
based on the simple Bernoulli flow to model the recovery 
in heap leaching. 
In this paper, a control volume finite element 
discretization is developed and applied to solve for the 
flow in porous media. The numerical model is 
implemented in Fluidity (AMCG, 2012). Fluidity is an 
open source CFD code capable of solving a number of 
different governing equations for fluid flow and 
accompanying field equations on arbitrary unstructured 
meshes. It contains advanced numerical features such as 
parallel mesh adaptivity and has been applied to many 
geophysical and industrial applications (Davies et al., 
2011, Piggott et al., 2008, Pain et al., 2001). The primary 
variables are chosen to be the pressure of air and the 
saturation of liquid. An IMplicit Pressure Explicit 
Saturation (IMPES) method is used to decouple pressure 
and saturation. In this method first introduced by Stone 
and Garder Jr (1961), Sheldon et al. (1959), the flow 
equations are split into an equation for pressure and an 
equation for saturation. These two equations are 
discretized in time using implicit and explicit 
approximations respectively. The saturation equation is 
spatially discretized using node centred control volume 
formed around the unstructured finite element mesh. The 
face values are determined through an upwind scheme. 
The pressure equation is spatially discretized using a 
continuous control volume finite element method (CV-
FEM) such as to be consistent with the discrete saturation 
equation. To verify the model, we compare our numerical 
results against the quasi-analytical solution for the 
Buckley-Leverett two phase flow problem (Buckley and 
Leverett, 1942). The advantage of this numerical approach 
is its consistent discretization of the pressure and 
saturation equations and its capability to model the heap 
leaching process in full scale with comprehensive 
characterization of air and liquid flow.  

MULTIPHASE FLOW IN POROUS MEDIA 

Governing Equation 

The Darcy's law along with the conservation of mass 
equation form the basis of multiphase incompressible flow 
in porous media (Bear, 1988). Assuming no sources or 
sinks in the domain, the mass conservation for each phase 
can be written as 
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where φ is the porosity of the porous medium, ρ is the 
density, S is the saturation, and u is the volumetric velocity 
of phase l. Darcy's law for phase l is given by 
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where  p is the pressure, K is the permeability, and µ is the 
isotropic viscosity of phase l. In addition to the 
conservation of mass and Darcy's law, the following 

relationships must be satisfied to close the system of 
equations: 
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where pc  is the capillary pressure, pn and pw are pressure 
of non-wetting phase and wetting phase respectively. 

Permeability 

Permeability (K) is a measure of the ability of a porous 
medium to allow the flow transit through. It can be 
decomposed into absolute permeability (ka) and relative 
permeability (kr). Absolute permeability is a characteristic 
property of the porous medium which is not affected by 
the presence of another fluid. However, when more than 
one fluid exists in the porous medium, the ratio of the 
effective permeability of each phase to the absolute 
permeability determines the relative permeability such that 

rlal kkK =         (5) 

Absolute permeability like other physical properties of 
porous materials is a function of the complex micro 
structure of the medium (Dullien, 1992). It can be related 
to other properties of the porous medium that can be 
measured more conveniently such as porosity and particle 
size. The classical Kozeny-Carman equation is a common 
way of estimating absolute permeability and it is capable 
of predicting permeability of monosized packs of spherical 
particles with a reasonable accuracy (Carman, 1937). 
However, Garcia et al. (2009) showed that the Kozeny-
Carman relation overpredicts the permeability of a porous 
medium consisting of irregular particles. They proposed a 
correlation for absolute permeability as a function of the 
harmonic mean diameter of the particles dp and the 
porosity of the medium: 

6.5211.0 φpa dk =         (6) 

In this paper, their correlation for absolute permeability is 
applied to model a heap. Average diameter of particles in 
a heap leaching process is typically 0.5cm and porosity of 
a heap is around 0.35. This leads to an absolute 
permeability of 7.7×10-9 m2. 

In contrast to the absolute permeability, relative 
permeability needs to be updated as the liquid passes 
through the heap. In application, the relative permeability 
of a particular phase is presented as a function of 
saturation. For the heap model, we apply a quadratic 
relative permeability-saturation correlation as follows: 
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where Slr is the residual saturation of phase l. 

Capillary Pressure 

The pressure of two immiscible fluids has a jump 
discontinuity across their interface in a porous medium. 
This pressure difference is called capillary pressure and 
defined as pc=pn-pw. In the heap leaching process, air is 
considered as the non-wetting phase and the leaching 
solution is the wetting phase. In application, capillary 
pressure can be correlated as a function of saturation. 
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Brooks and Corey (1964) presented a correlation for the 
capillary pressure such that 
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where pe is the entry capillary pressure and 
size distribution index. Entry capillary pressure can be 
calculated by dividing the surface tension of the non
wetting phase in contact with the wetting phase to the 
characteristic length of the porous medium. In the heap 
leaching application, it can be approximated as the surface 
tension of water in contact with air (0.07 N/m
the average particles' diameter (0.5 cm). This gives us an 
entry capillary pressure of pe=14 Pa and we choose 
for the pore size distribution index. 

NUMERICAL METHOD 
This section provides a brief description of the temporal 
and spatial discretization methods applied for 
the incompressible multiphase flow in porous media.

Temporal Discretization 

Assuming incompressible fluids and substituting i
ul from equation 2 in equation 1, the phase conservation 
equation is obtained as:   
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A global continuity equation is then formed via summing 
equation 9 for all phases and using the constraint from 
equation 3: 
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The primary variables to be solved prognos
chosen to be pn and Sw from which p
obtained diagnostically through equations 3 and 4

We use equation 10 to solve for the pressure using a 
control volume weighting function and finite element 
basis functions. Then to update the saturation, we solve 
equation 9 using a control volume scheme with the same 
order as the weighting functions employed for pressure. 
For temporal discretization, we employ an IMplicit 
Pressure Explicit Saturation (IMPES) method. In this 
method, to calculate the pressure at tim
equation 10 is used while the saturation is at previous time 
level, n: 
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Solving for the pressure implicitly, provides enough 
information to solve for the saturation explicitly. So, we 
apply equation 9 to update saturation explicitly and 
assume that the porosity is invariant in time:
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presented a correlation for the 
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y pressure and  α is the pore 
size distribution index. Entry capillary pressure can be 

surface tension of the non-
wetting phase in contact with the wetting phase to the 
characteristic length of the porous medium. In the heap 
leaching application, it can be approximated as the surface 

of water in contact with air (0.07 N/m) divided by 
). This gives us an 

and we choose α=0.5 

This section provides a brief description of the temporal 
and spatial discretization methods applied for modelling of 
the incompressible multiphase flow in porous media. 

Assuming incompressible fluids and substituting in for the 
, the phase conservation 

0=         (9) 

A global continuity equation is then formed via summing 
for all phases and using the constraint from 
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The primary variables to be solved prognostically are 
from which pw and Sn can be 

ly through equations 3 and 4. 

to solve for the pressure using a 
control volume weighting function and finite element 
basis functions. Then to update the saturation, we solve 

using a control volume scheme with the same 
order as the weighting functions employed for pressure. 
For temporal discretization, we employ an IMplicit 
Pressure Explicit Saturation (IMPES) method. In this 
method, to calculate the pressure at time step n+1, 

is used while the saturation is at previous time 
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Solving for the pressure implicitly, provides enough 
information to solve for the saturation explicitly. So, we 

to update saturation explicitly and 
assume that the porosity is invariant in time: 
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Spatial Discretization 

Since the pressure is discretized by a finite element basis 
and saturation is solved on node 
basis, they can be written as: 

∑
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where N is standard Lagrangian f
1 inside the control volume constructed around the node 
(see Figure 1) and zero everywhere else. The 
the pressure and saturation at degrees of freedom to be 
determined which for the basis 
correspond to the node j values. 

Figure 1: The node centred control volume mesh (shown 
by solid lines) is constructed around continuous finite 
element mesh (shown by dashed lines) by connecting the 
centroids of the neighbouring finite elements to the 
midpoints (AMCG, 2012). 

To generate a linear system for pressure a Petrov
Weighted Residual method is used. This in
multiplying equation 11 by a control volume based weight 
function and integrating over Ω to give:
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Since Mb is 1 inside control volume 
else, we obtain: 
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where the integration is now solely over the local control 
volume. Now, applying the divergence theorem to relate 
the curvature of the field inside the control volume to the 
flux through its surface yields: 
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where ГCV is the control volume surface bounding 
n is the unit outward pointing normal. The assembly of the 
linear system for the solution of the pressure is now 

Since the pressure is discretized by a finite element basis 
and saturation is solved on node centred control volume 

n
j Np̂         (13) 

b
n
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is standard Lagrangian finite element basis, Mb is 
constructed around the node j 

and zero everywhere else. The pj and Sj are 
the pressure and saturation at degrees of freedom to be 
determined which for the basis functions chosen also 
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is 1 inside control volume b and zero everywhere 
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where the integration is now solely over the local control 
the divergence theorem to relate 
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0=Γ








dg

        (17) 

volume surface bounding CVb and 
is the unit outward pointing normal. The assembly of the 

linear system for the solution of the pressure is now 
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reduced to integrations over the control volume surfaces 
for each term. The gradient of the pressure basis function 
can be readily evaluated on the control volume surfaces as 
they are internal to the finite element. The absolute 
permeability and viscosity are taken to be element wise 
such that they can be easily evaluated on the control 
volume surfaces. For incompressible flow conditions 
considered here the buoyancy term is constant across the 
domain. The relative permeability is represented with the 
same control volume basis set as the saturation thus a face 
value is required in the assemble process. Here a simple 
upwind scheme is taken where an estimate of the upwind 
direction is deduced from a finite element interpolation 
from an effective velocity. 

To generate a linear system for saturation a standard node 
centred control volume weighting and basis is used to 
obtain 
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As for the pressure equation all terms associated with the 
advection term can be readily evaluated at the control 
volume surfaces. For consistency the relative permeability 
face values used in the pressure matrix are also used for 
the saturation advection matrix. This ensures that the 
discrete saturation equations summed over all phases 
produces the discrete pressure equation.  

RESULTS AND DISCUSSIONS 

The Buckley-Leverett problem 

The Buckley-Leverett model is a one dimensional two 
phase flow in a homogeneous medium for which the 
quasi-analytical solution can be derived (Helmig, 1997). 
In this model, the porous medium is initially saturated 
with phase 1. Phase 2 is introduced to the medium by a 
constant flux from the left. We compare our numerical 
results against the quasi-analytical solution to show the 
numerical accuracy of the method and check its order of 
convergence. The one dimensional domain is discretized 
into equidistant elements. We assume that the viscosity of 
phase 1 and 2 are the same and relative permeability is 
obtained from following equations: 

2
11 Skr =         (19) 

2
12 )1( Skr −=         (20) 

In the Buckley-Leverett problem, a dimensionless time is 
defined as 

X

tu
t t
d φ

=         (21) 

where ut is the total velocity of both phases and X is the 
length of the domain. We chose a uniform permeability of 
10-10 m2, a uniform porosity of 0.5 and a total velocity of 
ut =1 m/s. The viscosity of the both phases is 10-4 Pa.s.  

 

Figure 2: Saturation profile for 10, 20, 40, and 80 
elements in comparison with the quasi-analytical solution. 

Figures 2 shows the comparison of the saturation profiles 
obtained from numerical simulation using 10, 20, 40, and 
80 elements with the quasi-analytical solution after 
dimensionless time of 0.4. The numerical simulation 
shows a very good agreement with the quasi-analytical 
solution. The simulation results improve for finer meshes 
the front saturation is matched very closely for 80 
elements. 

The heap model 

We simulate the two phase flow of air and leaching 
solution in a heap assuming that the transport occurs in a 
vertical two dimensional plane. Therefore, we model the 
flow on a two dimensional geometry as shown in Figure 3. 
 

Figure 3: Two dimensional heap geometry used for flow 
simulation. 
 
The width and height of the heap are assumed to be 100 
and 15 meters respectively. The porosity and permeability 
are assumed to be uniform in space and invariant in time - 
φ=0.35 and ka=7.7×10-9 m2. Density and viscosity of air 
are 1.2 kg.m-3 and 1.8×10-5 Pa.s respectively. For the 
leaching solution, these two parameters are assumed to be 
1010 kg.m-3 and 8.9×10-4 Pa.s. The initial saturation of the 
leaching solution is assumed to be zero. 
The leaching solution is applied to the heap from the top 
by a constant velocity of uw = 10 mm/hour. On the sides, 
we assume no flow boundary condition for the leaching 
solution. The residual saturation of the leaching solution in 
the heap is assumed to be 0.15. 
The two dimensional heap geometry is initially discretized 
into 782 elements and mesh adaptivity is applied based on 
the gradient of saturation. Therefore, as the liquid front 
moves through the heap, the mesh adapts itself to 
accurately resolve the flow dynamically with a minimum 
and maximum edge length of 0.5 and 3 meters 
respectively. The time step size is set to 10s. The 
simulation was performed on a personal computer with a 
3.0GHz CPU. The run time was 6 hours.  
Figure 4 shows the saturation distribution within the heap 
for t=33 hours and the surface mesh adapted to the 
gradient of saturation. It can be seen that the finer 
elements are formed in the region of heap where the 
saturation varies the most as expected. 
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(a) 

 
(b) 

Figure 4: The saturation distribution inside the heap 
geometry after t=33 hours (a) and the adapted mesh based 
on the gradient of saturation with a minimum and 
maximum edge length of 0.5 and 3 meters respectively 
(b). 
 
Figure 5 shows the number of elements during the 
numerical simulation. The number of elements increases 
to around 3900 elements as the leaching solution front 
transits through the heap. After the breakthrough time of 
81 hours, as the saturation front moves out of the heap, the 
number of elements reduces to 1400 elements. 
 

 

Figure 5: The number of finite elements for the heap 
leaching simulation versus time. 

 

Figure 6: Average saturation of the leaching solution 
within the heap versus time. 

 
Figure 6 shows the average saturation of the leaching 
solution within the heap versus time. The obtained 
numerical prediction exhibits the expected physical 
behaviour as the average saturation increases 

approximately linearly within the heap until the 
breakthrough time. Following the breakthrough of the 
leaching solution, the average saturation does not vary 
considerably as the process can be considered at a steady 
state.  
 

 
Figure 7: The vectors of the leaching solution velocity at 
the steady state.  
 
Figure 7 shows the vectors of the leaching solution 
velocity at steady state. The velocity is almost constant 
and equal to the applied velocity at the top of the heap (10 
mm/hour). This is in agreement with the expected physical 
behaviour at the steady state. 
 

CONCLUSION 

This paper presented a control volume finite element 
scheme for numerical modelling of multiphase flow in 
porous media. The governing equations are conservation 
of mass for each phase and Darcy's law. The developed 
numerical scheme employs an IMPES algorithm for the 
temporal discretization of the governing equations. 
Pressure is discretized spatially using a control volume 
finite element method. For saturation, a node centred 
control volume method is employed. The numerical 
scheme is implemented in Fluidity which contains 
advanced numerical features such as mesh adaptivity that 
can achieve high spatial accuracy for multiscale problems 
at low computational cost. The accuracy of the scheme is 
verified by comparing the numerical results against the 
quasi-analytical solution for the Buckley-Leverett 
problem. We showed the application of the method for the 
simulation of a heap leaching process. We simulated the 
two phase flow of air and the leaching solution within a 
two dimensional heap geometry and examined the use of 
mesh adaptivity to capture the evolving features of the 
flow. This illustrates the capability of the developed 
scheme for accurate numerical modelling of transport 
phenomena in porous media for large scale industrial 
applications. For future work, the developed scheme can 
be applied for simulation of non-uniform introduction of 
leaching solution in heterogeneous porous media in 
presence of chemical reaction occurring during the 
infiltration.  
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