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ABSTRACT

Accurate determination of the fluid flow within hea
leaching is critical to understanding and improving
performance of the process. Numerical methods kave
potential to assist by modelling the process andystg
the transport phenomena within the porous mediuns T
paper presents a numerical scheme to solve fotunased
incompressible flow in porous media with applicatido
heap leaching. The classic Richard's equation igeddbr
the porous medium representing a heap. The nurherica
method is implemented in Fluidity (AMCG, 2012), an
open source and general purpose finite elementialu
model. It has the capability of solving a number of
different governing equations for fluid flow and
accompanying field equations on arbitrary unstmeztu
meshes. A control volume finite element scheme is
employed to simulate the two phase flow of air and
leaching solution in the porous media. An implicit
pressure explicit saturation formulation (IMPES)used

to decouple the pressure and saturation equattsassure

is discretized using a control volume finite elemnen
method (CV-FEM) and saturation with a node centred
control volume method. The model is verified by
modelling the Buckley-Leverett problem where a guas
analytical solution is available. The method is lsggpto
two phase flow of air and leaching solution in mslified

two dimensional heap geometry. We also demonsthate
potential to achieve high spatial accuracy at low
computational cost through the use of the anisatnosh
adaptivity.

NOMENCLATURE

d, diameter of particles
K  permeability

ko, absolute permeability
k. relative permeability
p pressure

p. capillary pressure

pe entry capillary pressure
Pnw hON-wetting pressure
wetting pressure
saturation
non-wetting saturation
residual saturation
wetting saturation
time

dimensionless time
velocity

|C;’l"‘""éj)_(j):gj)(j)?
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U, total velocity

a pore size distribution index
¢ porosity

M Viscosity

p density

INTRODUCTION

Numerical modelling of multiphase flow in porous dre

is of great importance in many fields of enginegrand
sciences (Bear, 1988). Originally these models asedh
on the finite difference method (Aziz and Settd986).
However, finite difference methods typically lacket
flexibility required to represent complex geomedriand
material properties of porous media and capture the
multiscale evolving features associated with thwvflin
porous media. Unstructured finite volume/element
methods are capable of capturing complex three
dimensional geometries and can be combined with
adaptive mesh methods to achieve high fidelity rede
While the formulation and methods described in gaper
can be generalized to different areas of trandpgrbrous
media, here we focus on the application of a céntro
volume finite element scheme to simulate and aeatlye
transport of multiphase fluids in heap leaching.

Heap leaching is one of the most important methiods
extract metals such as copper, zinc, and gold frozs. It
consists of two main processes: multiphase fluddvfin

the heap and the physio-chemical reaction betwken t
ores and the leaching solution. These two processebe
studied separately assuming that the reaction psodees
not affect the flow pattern (Cariaga et al., 2005)he
accurate simulation of the flow is of great impade
since other aspects of the process, such as ragactfon,
depend highly on it. In addition, rapid and acocerat
numerical simulation of heap leaching phenomena is
cost effective method to design and optimize the
operational processes and irrigation strategies.this
paper we focus on the numerical simulation of mhlkise
flow within a heap where the displacing phase is th
leaching solution and the displaced phase is air.

The governing equations for multiphase flow in po
media consist of Darcy's law along with the conaton

of mass for each phase, which together form thssida
Richard's equation. Different approaches have been
applied to solve for flow in a heap leaching praces
Munoz et al (1997) proposed a two dimensional
mathematical model based on the finite difference
discretization of Darcy's law and validated theisults by
comparing against a radial flow experiment. McBrigte



al. (2012) applied a finite volume method to sdieethe
flow and modelled a gold oxide heap successfullyidga

et al. (2005) employed a mixed hybrid finite elemen
approach to solve for liquid and air flow in a two
dimensional pilot-scale heap. McBride et al (200&yega
review on some common numerical techniques to solve
for the flow in a heap leaching process. Furtheemor
Mellado et al. (2009) proposed an analytical apgoa
based on the simple Bernoulli flow to model the wery

in heap leaching.

In this paper, a control volume finite element
discretization is developed and applied to solve tfe
flow in porous media. The numerical model is
implemented in Fluidity (AMCG, 2012). Fluidity is an
open source CFD code capable of solving a number of
different governing equations for fluid flow and
accompanying field equations on arbitrary unstmeztu
meshes. It contains advanced numerical featurds asc
parallel mesh adaptivity and has been applied toyma
geophysical and industrial applications (Davies akt
2011, Piggott et al., 2008, Pain et al., 2001). pfimary
variables are chosen to be the pressure of airthed
saturation of liquid. An IMplicit Pressure Explicit
Saturation (IMPES) method is used to decouple press
and saturation. In this method first introduced $tpne
and Garder Jr (1961), Sheldon et al. (1959), toev fl
equations are split into an equation for pressumgé an
equation for saturation. These two equations are
discretized in time using implicit and explicit
approximations respectively. The saturation egquai®
spatially discretized using node centred contrdume
formed around the unstructured finite element méasie
face values are determined through an upwind scheme
The pressure equation is spatially discretized gusin
continuous control volume finite element method (CV-
FEM) such as to be consistent with the discreteraton
equation. To verify the model, we compare our nicaér
results against the quasi-analytical solution fdre t
Buckley-Leverett two phase flow problem (Buckley and
Leverett, 1942). The advantage of this numericakagch

is its consistent discretization of the pressured an
saturation equations and its capability to model lileap
leaching process in full scale with comprehensive
characterization of air and liquid flow.

MULTIPHASE FLOW IN POROUS MEDIA

Governing Equation

The Darcy's law along with the conservation of mass
equation form the basis of multiphase incompresdibw

in porous media (Bear, 1988). Assuming no sources or
sinks in the domain, the mass conservation for ehetse
can be written as

I S)
a

+0gy,)=0 (1)

where ¢ is the porosity of the porous medium,is the

density,Sis the saturation, andis the volumetric velocity
of phasd. Darcy's law for phadeis given by

K
u =-—-(0Op, -p 9)

)

where p is the pressurés is the permeability, and is the
isotropic viscosity of phasd. In addition to the
conservation of mass and Darcy's law, the following
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relationships must be satisfied to close the systém
equations:
2.5=1
|
P.(S,) = P, ~ Py )

wherep, is the capillary pressure, andp,, are pressure
of non-wetting phase and wetting phase respectively

®3)

Permeability

Permeability K) is a measure of the ability of a porous
medium to allow the flow transit through. It can be
decomposed into absolute permeabiliky) (and relative
permeability k). Absolute permeability is a characteristic
property of the porous medium which is not affecbgd
the presence of another fluid. However, when mbemnt
one fluid exists in the porous medium, the ratiothod
effective permeability of each phase to the absolut
permeability determines the relative permeabilitghsthat

K, = kk, )

Absolute permeability like other physical propestief
porous materials is a function of the complex micro
structure of the medium (Dullien, 1992). It canrbkated
to other properties of the porous medium that can b
measured more conveniently such as porosity artitigar
size. The classical Kozeny-Carman equation is anomm
way of estimating absolute permeability and it apable
of predicting permeability of monosized packs diesfical
particles with a reasonable accuracy (Carman, 1937)
However, Garcia et al. (2009) showed that the Kgzen
Carman relation overpredicts the permeability obeops
medium consisting of irregular particles. They pregd a
correlation for absolute permeability as a functafrthe
harmonic mean diameter of the particlds and the
porosity of the medium:

k, = 011d ’p*° (6)
In this paper, their correlation for absolute peahikity is
applied to model a heap. Average diameter of pastin
a heap leaching process is typically 0.5cm and gityrof
a heap is around 0.35. This leads to an absolute
permeability of 7.7x18 n?.

In contrast to the absolute permeability, relative
permeability needs to be updated as the liquid gsass
through the heap. In application, the relative pahility

of a particular phase is presented as a function of
saturation. For the heap model, we apply a quadrati
relative permeability-saturation correlation asdofs:

Mz(s—aJ
1-5

whereS; is the residual saturation of phdse

(@)

Capillary Pressure

The pressure of two immiscible fluids has a jump
discontinuity across their interface in a porousdime.
This pressure difference is called capillary pressand
defined asp=p,-pw- In the heap leaching process, air is
considered as the non-wetting phase and the leachin
solution is the wetting phase. In application, Bapi
pressure can be correlated as a function of saiorat



Brooks and Corey (1964)resented a correlation for t
capillary pressure such that

Su— SWJ @)
1-S,

wherep, is the entry capillar pressure an o is the pore
size distribution index. Entry capillary pressurancbe
calculated by dividing thesurface tension of the n-

wetting phase in contact with the wetting phasethie
characteristic length of the porous medium. In leap
leaching application, it can be approximated asstiréace
tensionof water in contact with air (0.07 N) divided by
the average particles' diameter (0.5).cifrhis gives us a
entry capillary pressure @i=14 Paand we choosa=0.5

for the pore size distribution index.

M%rm(

NUMERICAL METHOD

This section provides a brief description of thmperal
and spatial discretization methods appliedmodelling of
the incompressible multiphase flow in porous me

Temporal Discretization

Assuming incompressible fluids and substitutin for the
u, from equation 2 in equation, the phase conservati
equation is obtained as:

é'(f/ﬁ)_DEﬁK p, - KA gj 0 ©)
a H |

A global continuity equation is then formed via suimg
equation 9for all phases and using the constraint fi

equation 3:
mﬁ&mpl Kpgj =0 (10)
H Mo~

The primary variables to be solved proctically are
chosen to bep, and S, from which p,, and S, can be
obtained diagnostidgithrough equations 3 an.

We use equation 1@ solve for the pressure using
control volume weighting function and finite elenh
basis functions. Then to update the saturationsohee
equation 9using a control volume scheme with the s:
order as the weighting functions employed for puess:
For temporal discretization, we employ an IMpl
Pressure Explicit Saturation (IMPES) method. Ins
method, to calculate the pressure ate step n+1,
equation 10s used while the saturation is at previous t
level, n:

0 I:EKI Dplm-l _ K| P g] =0 (12)

| |
Solving for the pressure implicitly, provides enbt
information to solve for the saturation explicitigo, we
apply equation 9to update saturation explicitly ai
assume that the porosity is invariant in ti

AS™ -8 _ g KA (12)
At EEM P 4 g]
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Spatial Discretization

Since the pressure is discretized by a finite efgrbasis
and saturation is solved on nocentred control volume
basis, they can be written as:

M

p"=> BN (13)
i=1
VI

s'=Yém, (14)

whereN is standard Lagrangiainite element basisvl, is

1 inside the control volumeonstructed around the noj
(see Figure 1and zero everywhere else. Tp, and§ are
the pressure and saturation at degrees of freedobe
determined which for the basfunctions chosen also
correspond to the nodlevalues.

Figure 1: The node centredontrol volume mesh (show
by solid lines) is constructed around continuoustdi
element mesh (shown by dashed lines) by connettie
centroids of the neighbourirfinite elements to thedge
midpoints (AMCG, 2012).

To generate a linear system for pressure a F-Galerkin
Weighted Residual method is used. Thisvolves
multiplying equation 1by a control volume based weic
function and integrating ové to give

mofr(Sow Ko gl 09

SinceMy, is 1 inside control volumb and zero everywhere
else, we obtain:

_ J' EE { L Oprt - K'o gjjdvzo (16)
Qv Mo

where the integration is now solely over the logahtrol
volume. Now, applyinghe divergence theorem to rel;
the curvature of the field inside the control voluto the
flux through its surface yields:

- | Q..DEEZI(K?'HDQ”” KA Bdr 0 @)

Fevy,

wherel ¢y is the contrololume surface boundirCV,, and
nis the unit outward pointing normal. The assemtiflthe
linear system for the solution of the pressure @wv



reduced to integrations over the control volumdaaas
for each term. The gradient of the pressure basistion
can be readily evaluated on the control volumeased as
they are internal to the finite element. The abisolu
permeability and viscosity are taken to be elemeise
such that they can be easily evaluated on the aontr
volume surfaces. For incompressible flow conditions
considered here the buoyancy term is constant a¢hes
domain. The relative permeability is representeth whe
same control volume basis set as the saturaticnaHhace
value is required in the assemble process. Heienples
upwind scheme is taken where an estimate of thangpw
direction is deduced from a finite element integioin
from an effective velocity.

To generate a linear system for saturation a stdnuade
centred control volume weighting and basis is used
obtain

I n %ﬁ Dplrwl _
Few H

As for the pressure equation all terms associatéu tive
advection term can be readily evaluated at therobnt
volume surfaces. For consistency the relative pahiligy
face values used in the pressure matrix are aled for

the saturation advection matrix. This ensures that
discrete saturation equations summed over all ghase
produces the discrete pressure equation.

(18)

J7 At

Qcy,

RESULTS AND DISCUSSIONS

The Buckley-Leverett problem

The Buckley-Leverett model is a one dimensional two
phase flow in a homogeneous medium for which the
quasi-analytical solution can be derived (Helmig917).

In this model, the porous medium is initially saiied
with phase 1. Phase 2 is introduced to the mediyma b
constant flux from the left. We compare our nurnedric
results against the quasi-analytical solution towstthe
numerical accuracy of the method and check itsroofie
convergence. The one dimensional domain is dizembti
into equidistant elements. We assume that the sitgcof
phase 1 and 2 are the same and relative permgaisilit
obtained from following equations:

krlZSJ.2
ko=0-S)°

In the Buckley-Leverett problem, a dimensionlessetis
defined as

(19)

(20)

t
t, = Ut (1)

1/

whereu, is the total velocity of both phases axds the
length of the domain. We chose a uniform permegtoli
10* n?, a uniform porosity of 0.5 and a total velocity of
u; =1 m/s The viscosity of the both phases i$*Ha.s
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—— quasi_analytical solution
10 elements
-- 20 elements
-0 -40elements
-0- 80 elements

Saturation
o o o o
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o

Figure 2: Saturation profile for 10, 20, 40, and 80

elements in comparison with the quasi-analytichitgm.

Figures 2 shows the comparison of the saturatiofiles
obtained from numerical simulation using 10, 20, d0d

80 elements with the quasi-analytical solution rafte
dimensionless time of 0.4. The numerical simulation
shows a very good agreement with the quasi-analytic
solution. The simulation results improve for fimaeshes
the front saturation is matched very closely for 80
elements.

The heap model

We simulate the two phase flow of air and leaching
solution in a heap assuming that the transportrscicua
vertical two dimensional plane. Therefore, we maithel
flow on a two dimensional geometry as shown in Fegii

A YA
QO
ﬂigﬁ %fzﬁ : o

R,
@;ﬂgﬁh&’ﬂl’m&

ﬂ‘

simulation.

The width and height of the heap are assumed tb0Be
and 15 meters respectively. The porosity and pervitiya

are assumed to be uniform in space and invariatiinie -
9=0.35 andk,=7.7x10° n?. Density and viscosity of air
are 1.2kg.m® and 1.8x18 Pa.s respectively. For the
leaching solution, these two parameters are asstoned
1010kg.nm?® and 8.9x1d Pa.s.The initial saturation of the
leaching solution is assumed to be zero.

The leaching solution is applied to the heap frown top

by a constant velocity af,, = 10 mm/hour On the sides,

we assume no flow boundary condition for the leaghi
solution. The residual saturation of the leachiolgtson in

the heap is assumed to be 0.15.

The two dimensional heap geometry is initially ditized

into 782 elements and mesh adaptivity is appliestdan

the gradient of saturation. Therefore, as the diguont
moves through the heap, the mesh adapts itself to
accurately resolve the flow dynamically with a mmgim

and maximum edge length of 0.5 and 3 meters
respectively. The time step size is set tos 1The
simulation was performed on a personal computen wit
3.0GHz CPU. The run time was 6 hours.

Figure 4 shows the saturation distribution withie heap

for t=33 hours and the surface mesh adapted to the
gradient of saturation. It can be seen that therfin
elements are formed in the region of heap where the
saturation varies the most as expected.



o
oF
o

(b)
Figure 4: The saturation distribution inside the heap
geometry aftet=33 hours (a) and the adapted mesh based
on the gradient of saturation with a minimum and
maximum edge length of 0.5 and 3 meters respegtivel

(b).

Figure 5 shows the number of elements during the
numerical simulation. The number of elements ineesa
to around 3900 elements as the leaching solutiont fr
transits through the heap. After the breakthrougte tof

81 hours, as the saturation front moves out ohtap, the
number of elements reduces to 1400 elements.

4500 4
4000 -
3500 -
3000 A

2500 -

2000 -

Number of elements

1500

1000 1

500 -

0

0 10 20 30 40 50 60 70 80 90 100

Time (hour)

Figure5: The number of finite elements for the heap
leaching simulation versus time.

0.16 -
0.14 A
0.12 4
0.1 4

0.08 4

Avergae saturation

0.04 4

0.02 4

0 10 20 30 40 50 60 70 80 90 100

Time (hour)

Figure 6: Average saturation of the leaching solution
within the heap versus time.

Figure 6 shows the average saturation of the lagchi

solution within the heap versus time. The obtained
numerical prediction exhibits the expected physical
behaviour as the average saturation increases
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approximately linearly within the heap until the
breakthrough time. Following the breakthrough oé th
leaching solution, the average saturation doesvaoy
considerably as the process can be consideredtatdy
state.

Figure 7: The vectors of the leaching solution velocity at
the steady state.

Figure 7 shows the vectors of the leaching solution
velocity at steady state. The velocity is almoshstant
and equal to the applied velocity at the top oftieap (10
mm/houy. This is in agreement with the expected physical
behaviour at the steady state.

CONCLUSION

This paper presented a control volume finite eldmen
scheme for numerical modelling of multiphase flow i
porous media. The governing equations are consernvat
of mass for each phase and Darcy's law. The desélop
numerical scheme employs an IMPES algorithm for the
temporal discretization of the governing equations.
Pressure is discretized spatially using a contallme
finite element method. For saturation, a node eentr
control volume method is employed. The numerical
scheme is implemented in Fluidity which contains
advanced numerical features such as mesh adaptaty
can achieve high spatial accuracy for multiscatibjgms

at low computational cost. The accuracy of the sehés
verified by comparing the numerical results agaitis&t
quasi-analytical solution for the Buckley-Leverett
problem. We showed the application of the methadte
simulation of a heap leaching process. We simuléted
two phase flow of air and the leaching solutionhivita
two dimensional heap geometry and examined theofise
mesh adaptivity to capture the evolving featuresthaf
flow. This illustrates the capability of the devedul
scheme for accurate numerical modelling of transpor
phenomena in porous media for large scale indlistria
applications. For future work, the developed scheame

be applied for simulation of non-uniform introduwti of
leaching solution in heterogeneous porous media in
presence of chemical reaction occurring during the
infiltration.
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