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ABSTRACT 

Numerical accuracy, numerical stability and calculation 

time are all important factors in the computational fluid 

dynamics. In this study, we compare two solution 

algorithms, the Simplified Marker and Cell (SMAC) 

method in the MAC-type methods and the Semi-Implicit 

Method for Pressure-Linked Equation (SIMPLE) 

algorithm in the SIMPLE-type algorithms, with respect to 

flow around a square cylinder in constant density and 

unsteady-state calculations using a staggered grid to 

investigate the numerical accuracy, the numerical stability 

and the computational time. For the flow around a square 

cylinder, the SMAC and SIMPLE solutions are in 

excellent agreement at the Strouhal number, drag and lift 

coefficients. However, SMAC is more unstable than 

SIMLE with a large Courant number. The computational 

time of the SMAC is shorter than that of the SIMPLE with 

a small Courant number. 

NOMENCLATURE 

A area 

back back face 

bottom  bottom face 

CL Lift coefficient 

CD Drag coefficient 

Cr Courant number  

D characteristic length 

Dn diffusion number,  

e  cell surface index 

f frequency of vortex shedding 

front front face 

in inlet 

n  cell surface index 

p pressure 

Re Reynolds number 

RC rectangular 

St Strouhal number 

s  cell surface index 

t elapsed time 

top  top face 

u velocity 

u velocity 

v velocity 

x coordinate 

y coordinate 

w cell surface index 



 under relaxation factor 

t time step 

x grid width 

y grid width 

 convergence criterion 

 viscosity 

 density 

 non-dimensional computational speed 

INTRODUCTION 

Solution algorithms of pressure-velocity coupling are 

widely used for incompressible fluid flow calculations. 

The solutions expend the major part of time of the 

Computational Fluid Dynamics (CFD), because iterative 

calculations are required. In the CFD, numerical accuracy, 

numerical stability and calculation time are all important 

factors. As the calculation time influences the calculation 

cost directly, the calculation speed is the most important 

factor. But at the same time, it is necessary that the 

numerical accuracy and numerical stability are high. Thus, 

in order to perform better CFD, it is required to balance 

these factors. In particular, we focus on coupling schemes 

to decrease the calculation cost. 

 

The solution algorithms solve for continuity and 

momentum equations, for which Marker and Cell (MAC) 

methods and Semi-Implicit Method for Pressure-Linked 

Equation (SIMPLE) type algorithms have been widely 

applied. Both common parts are solving the continuity 

equation in implicitly, and the most significant difference 

between the methods is the treatment of momentum 

equations; the former is solved in explicitly, and the latter 

is in implicitly. 

 

Generally, MAC-type methods are used for unsteady-state 

calculations and SIMPLE-type algorithms are used for 

steady-state or pseudo-unsteady state calculations. 

However, as SIMPLE-type algorithms are widely used for 
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combustion flow dynamics, SIMPLE-type algorithms are 

needed to correspond with unsteady-state calculations. 

Thus, although SIMPLE-type algorithms (SIMPLE, 

SIMPLE-Consistent (SIMPLEC), SIMPLE-Revised 

(SIMPLER), and Pressure Implicit with Splitting of 

Operators (PISO)) are compared with each other in steady-

state or pseudo-unsteady-state [Van Doormaal and 

Raithby (1984) , Issa et al. (1986)], unsteady-state 

calculations have been only a few reported [Barton 

(1998)]. The comparison of MAC-type (MAC, Simplified 

MAC (SMAC), and Highly Simplified MAC (HSMAC)) 

methods and SIMPLE-type algorithms in unsteady-state 

fluid flow calculations have been only a few reported 

[Kim and Benson (1992)]. 

 

In Kim and Benson’s study, the SMAC method is 

compared numerically with the PISO method. According 

to their numerical results, for a larger time step, the SMAC 

method is more strongly convergent and yields more 

accurate results than the PISO scheme, and it is more 

computationally efficient. They consider the steady-state 

calculation time and unsteady-state calculation time 

together. There is little consideration of different in the 

unsteady-state solutions.  

 

The restriction of a time step (i.e., Courant number) 

directly influences the calculation cost. Therefore, many 

researchers consider calculation cost only in relation to the 

Courant number. However, calculation cost is the actual 

time a calculation requires; therefore, to evaluate 

calculation cost effectively, the real calculation time must 

be considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Flowchart. 

This study is intended to report comparison of the SMAC 

method and the SIMPLE algorithm. These methods have 

been compared for transient flow calculations in constant 

density using a staggered grid to investigate numerical 

accuracy, numerical stability, and calculation time. In the 

Courant number for time step restriction, we discuss about 

from 0.01 to 2.0 in order to investigate characteristic of 

each other. The treatment of discretized schemes, 

boundary conditions, time step restrictions, etc. with the 

SMAC method and SIMPLE is as equal as possible. 

NUMERICAL METHODS 

Governing equations 

The governing equation of fluid flow is composed the 

continuity and momentum equation as followed. In this 

study, the property of density and viscosity is constant. 

Continuity equation: 

                                           (1) 

Momentum equations: 
   

  
                               (2) 

Solution algorithms of pressure-velocity coupling 

We compare two coupling schemes: the Simplified 

Marker and Cell (SMAC) method and Semi-Implicit 

Method for Pressure-Linked Equation (SIMPLE) 

algorithm. 

 

Those coupling schemes are analysis for incompressible 

fluids, and the continuity equation and momentum 

equations are solved. 
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Figure 1 presents flowcharts for the coupling schemes. In 

this study, we use an implicit method for the unsteady 

term of the momentum equations. Although discretised 

momentum equations in SMAC are solved using a matrix 

solver, it is a few to solve the equations. Thus, in the 

figure of SMAC and SIMPLE, the thick-bordered boxes 

are a part which requires calculation cost.  

 

Numerical schemes 

Table 1 shows a summary of the numerical schemes used. 

The governing equations are discretized via the finite 

volume method.  

 

The 2nd-order Crank-Nicolson method is applied to the 

discretization scheme of unsteady term with SMAC and 

SIMPLE in order to equate the temporal accuracy.  

 

Since the spatial schemes become the equal for the SMAC 

method and SIMPLE, it is also necessary to equalize the 

temporal schemes. If an explicit method (e.g., Euler-

explicit, Adams-Bashforth, or Runge-Kutta method) is 

used for SIMPLE, the calculation technique infringes upon 

the principles of SIMPLE. We use the implicit method 

(i.e., Crank-Nicolson method) in the discretization of 

temporal term for the momentum equation. 

 

In SIMPLE, an under-relaxation factor () is needed for 

the momentum and pressure equations. We compared  = 

0.3, 0.5 and 0.7, relative to calculation time. The 

calculation at  = 0.5 was determined to be the fastest. 

This result was computed using the sum of calculation 

time where the Courant number was 0.1, 0.5, 1.0 and 1.5. 

Hence, the under-relaxation for following SIMPLE 

calculation was used  = 0.5. 

 

Table 1: Numerical schemes. 

Discretization method Finite volume 

Discretization scheme   

Convection term 3rd-order upwind difference 

Diffusion term 2nd-order central difference 

Unsteady term for 

SMAC 

2nd-order Crank-Nicolson 

Unsteady term for 

SIMPLE 

2nd-order Crank-Nicolson 

Coupling scheme SMAC, SIMPLE 

Matrix solver Residual cutting method 

 

Convergence criterion 

A residual error of the continuity equation with the SMAC 

method and SIMPLE is evaluated using  
 |                           |

 ch ch
                 (3) 

where,  is the convergence criterion. The convergence 

criterion is  = 1.0 × 10-6 for rigid conditions. In general, 

the error is evaluated by the numerator of the above 

equation. However, we evaluate by very rigid conditions 

because the difference in the system size might be ignored. 

Stability condition for time step 

The time step t is given to satisfy the following stability 

condition:  

      [
  

   (
 

  
 
 

  
)
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   )
]                  (4) 

where, Cr is the Courant number and Dn is the diffusion 

number. Cr is varied and Dn is set to 0.3. In any case, the 

diffusion number did not exceed 0.3. 

Calculation time 

In this study, we compare calculation times to determine 

calculation costs. We measure the time from the start of 

the calculation to the end, which is defined as CPU time. 

Then, to compare the SMAC method and SIMPLE, we 

introduce non-dimensional computational speed (    ), 

which is defined as follows:  
 

 
 

                 

        
                           (4) 

where the standard CPU time for the normalization is the 

computational time of SIMPLE and Cr = 0.01. The larger 

the value, the more quickly the calculation is completed. 

Calculation environment 

All the calculations are carried out using workstations with 

a single Intel(R) Core i7-980X Extreme 3.33 GHz CPU.  

Numerical conditions 

The analytical object is two-dimensional flow in a duct 

with an inserted square cylinder. Figure 2 shows the 

computational configuration. The width of the square 

cylinder is     mm. The computational domain is 

        in the x- and y-coordinate directions, 

respectively. 

 

The inlet boundary is located at    upstream of the 

cylinder; the outlet boundary is located at     

downstream of the cylinder; and the side boundaries are 

located at    away from the cylinder. A uniform flow is 

prescribed at the inlet boundary, and the zero-gradient 

boundary condition is used at the outlet boundary. The 

free-slip condition is given to the side boundaries, and the 

no-slip condition is given to boundaries of the cylinder.  

 

The flow domain is discretized by uniform        , 

       , and         grid points in the x- and y-

coordinate directions, respectively. The coarse and fine 

meshes were used solely to study the dependence of the 

mesh size on numerical results. All numerical results 

presented were obtained using the medium mesh.  

 

Fluid properties are assumed to be     kg/m3, and 

         Pa･s. The Reynolds number, based on a 

side of the cylinder and inlet velocity, is        
      ⁄     . The calculation is advanced to 1.3 s. 

The characteristic velocity is         and the 

characteristic length is         in the convergence 

criterion.  

 

Figure 2: Flow around a square cylinder configuration. 

RESULTS 

The calculated Strouhal numbers (         ⁄ ) are 

compared with the measured data [Davis and Moore, 

(1982)] in Figure 3, where SIMPLE data at Cr = 0.01 
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indicates that the flow does not reach a steady-state, and if 

t = 2.0 s, the St value with SIMPLE at Cr = 0.01 is 0.141. 

The f value is calculated by the vortex shedding period. 

This figure shows that the present numerical results are in 

good agreement with experimental data. Hence, the 

numerical accuracy of SMAC and SIMPLE is excellent. 

The St values of SIMPLE are constant with an increase in 

the Cr value, while those of SMAC decreases. This 

indicates that SIMPLE is more stable than SMAC method 

as the Cr values increase. 

 

Figure 3: Strouhal number at Re = 190 and t = 1.3 s. 

 

Figure 4 and Figure 5 show the drag and lift coefficients 

at t = 1.3, where the CD and CL values are defined as 

following equation: 

 D  
   f      b      

 

 
    

  
                          (5) 

and 

   
 (      b     )  

 

 
    

  
                           (6) 

 

These figures show that the SMAC and SIMPLE results 

are in good agreement with the CD and CL values.  

 

This is obtained because of the all discretization schemes 

used in this study are same with SMAC and SIMPLE: the 

convection, diffusion and unsteady term discretization 

schemes. Therefore, it is considered to require treating the 

relating schemes in the same way, when the numerical 

accuracy in the coupling schemes is discussed. 

 

Figure 5 shows a significant difference between the 

SIMPLE and SMAC at Cr = 0.01 and t = 1.3 s. This is 

similar to the problem with the Strouhal number because 

the calculation of SIMPLE at Cr = 0.01 has not reached 

steady-state. The CL value will be set to 0.00 if the 

calculation is continued. 

 

Figure 4 and Figure 5 also show that SMAC is less stable 

and SIMPLE is stable as the Cr value increases. 

 

Figure 6 shows the non-dimensional computational speed, 

where the normalization CPU time is the computational 

time (216892.66 s) of SIMPLE at Cr = 0.01. This figure 

indicates that the calculation time of SMAC is shorter than 

that of SIMPLE in all case. When the results are compared 

at Cr = 0.1, SMAC is 1.5 times faster than SIMPLE. 

 

 

 

 

Figure 4: Drag for the flow over the square cylinder. 

 

 

Figure 5: Lift for the flow over the square cylinder. 

 

 

Figure 6: Computational speed at t = 1.3 s 

 

Figure 7 shows total iteration number of the matrix solver 

for the momentum pressure correction equation.  

 

In SMAC, the total iteration number increases with an 

increase Cr value, and decreases as the Cr value exceed 1. 

This is because SMAC is less stable as the Cr value 

increases. Although the iteration number increases within 
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1 time step with an increases the Cr value, the number of 

time steps decrease so that the iteration number decreases.  

 

 

Figure 7: The number of solver is called at t = 1.3 s. 

 

SIMPLE shows a tendency similar to SMAC. But, The 

iteration number at Cr = 0.01 is large. This is because the 

number of time steps is large at the Cr value is small.  

 

When the iteration number of SMAC and SIMPLE at Cr = 

0.01 are compared, that of SMAC is less than that of 

SIMPLE. This is caused for the iteration number is a few, 

because SMAC is calculated explicitly.  

 

Expect the case of Cr = 0.01, this figure shows that the 

iteration number of SMAC is larger than that of SIMPLE. 

However, the calculation time of the SMAC is shorter than 

that of the SIMPLE in all cases. This is because that the 

pressure correction equation is only solved after the 

momentum equation is solved in SMAC, while the 

momentum equation and pressure correction equations are 

solved to satisfy those equations at the same time in 

SIMPLE. This also shows that it is difficult to determine 

which the calculation time completely depends on the 

iteration number. Therefore, not evaluation of the total 

iteration number but the evaluation of the actual 

calculation time is required. 

 

From above mentioned, the accuracy of SMAC and 

SIMPLE is the same in the small Courant number. Hence, 

if the target system is stable and the Courant number is 

small, we show SMAC is useful. 

CONCLUSION 

In the present study, the SMAC method and SIMPLE 

algorithm are evaluated for unsteady-state fluid flow 

calculations. The following results are obtained. 

 

・ The calculated Strouhal numbers of SMAC and 

SIMPLE are in good agreement with experimental 

data. The numerical accuracy of SMAC and SIMPLE 

in steady-state is excellent. 

・ The calculated drag and lift coefficients of SMAC 

and SIMPLE are in good agreement with each other. 

The numerical accuracy of SMAC and SIMPLE is 

the same in the small Courant number. 

・ SMAC is more unstable than SIMLE in the large 

Courant number. 

・ The computing time of the SMAC method is short 

compared with the SIMPLE algorithm. 

 

As a result, the SMAC method is effective in case of 

incompressible, constant density and unsteady-state fluid 

flow calculations. 
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