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ABSTRACT 

Segregation and mixing of granular mixtures is important 

to the minerals, food processing and pharmaceuticals 

industry to name just a few. It has recently been 

demonstrated that the rotary classifier is a suitable device 

for separating out binary granular mixtures, i.e. mixtures 

composed of only two different particle types. However, 

most practical granular mixtures are composed of multi-

component particle types. We therefore study, using the 

DEM method, the capability of the rotary classifier to 

segregate mixtures where the particles differ either in size 

or density. We find that segregation is more significant for 

size varying systems than for density varying systems. We 

relate this observation to the underlying physical 

mechanisms. 

INTRODUCTION 

Granular matter represents one of the scientifically least 

understood yet one of the industrially most important 

areas of physics (Duran, 2000, Bagnold, 1941, Jaeger and 

Nagel, 1992, Mehta, 1994, Ristow, 2000). Segregation in 

granular materials occurs when moving particles differ in 

some fundamental property such as size, density or shape. 

Segregation in granular media can occur in a rotary 

classifier (Ottino and Khakhar, 2000, Khakhar et al, 1997, 

Meir et al, 2007, Pereira et al, 2011) which consists of a 

cylindrical drum roughly half-filled with the granular 

media. The drum is placed with its cylindrical axis 

perpendicular to the gravitational field and then rotated 

slowly about this axis (one revolution per minute is a 

typical speed). After a revolution, particles tend to 

segregate. For example, in a binary granular medium (i.e., 

the media consists of two different particle types) the 

smaller and/or the denser particles segregate to the centre, 

while larger and/or less dense particles segregate to the 

periphery. Here we extend our studies to consider the 

more representative case of multi-component granular 

mixtures (with 3 or 4 components) where the particles 

differ either in their size or density. 

DEM MODEL & SIMULATION MEASURES 

The simulation method which we use (DEM) is now a 

well-established and mature technique which has been 

extensively developed by us for a wide variety of granular 

flows (Cleary, 1998a and b, 2004). Here we very briefly 

describe the important aspects of this technique, which are 

important for our purposes and refer the reader to more 

detailed descriptions elsewhere (Walton, 1994, Cleary, 

1998b, 2004).  

DEM models particulate systems whose motions are 

dominated by collisions. It follows the motion of every 

particle and object in the flow and models each collision 

between particles and between particles and objects (i.e., 

inner surface of rotating drum). All forces and torques on 

each particle and object are summed and the equations of 

motion are integrated to give the resulting motion of these 

bodies. The collisions between particles and/or objects are 

modelled such that they are allowed to overlap. The 

amount of overlap and relative velocities between particles 

determine the collisional force via a contact force law. We 

use a linear spring and dashpot model to predict the 

collision dynamics. Other important parameters such as 

friction and coefficient of restitution are included in the 

model and specific values of all these can be found in a 

recent study (Pereira et al, 2011). The simulations 

reported in this study are carried out at angular rotation of 

the cylinder of one revolution every 60 seconds. The flow 

is on the border of the avalanching and rolling regimes 

(Meir et al, 2007). We shall use spherical particles of 

varying size and densities (which will be specified below). 

 We have previously studied binary mixtures of 

particles which differ only in their density in quite some 

detail and made comparisons with experiments (Pereira, 

2011). Besides the qualitative pictures of the segregation 

patterns, we also give two other quantitative measures to 

evaluate the amount of segregation. The first one 

calculates the average centre-of-mass (radial centroid) for 

each type of particle as a function of time. The radial 

centroid values have the overall centre-of-mass subtracted 

from them and then scaled with the cylinder radius. With 

this measure we can not only obtain a quantitative 

measure of the segregation but also a temporal evolution 

of the segregation. The second measure is an overall 

segregation measure where we divide the simulation 

domain into small cubic boxes with an edge length of 

approximately 5 particle diameters. Then we count the 

number of each particle type in each of the boxes and 

calculate the deviation from a perfectly mixed 

(homogenous) mixture of particles (i.e., equal volume of 

each of the components). We use the following definition 

for segregation (between two components, α and β): 
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where the total number of small cubes is 
cellN , V is the 

total volume of particles in the domain, while volumes in 

the ith cell are indicated with (i). In a perfectly mixed 

sample, the volumes of each of the components should be 

the same in all cells, so that the difference in (1) is zero. 

Hence Φ is zero. For a segregated sample, the difference 

in (1) is non-zero and so Φ will be non-zero. The more 

segregated the sample is, the larger the numerical value of 

Φ. The second factor in the sum in equation (1) gives a 

weighting to cells with more particles in them. For 



 

 

Copyright © 2012 CSIRO Australia 2 

samples with more than two components we give a value 

for Φ with each of the other components and also with the 

sum of the other components. 

RADIAL SEGREGATION IN THE CLASSIFIER 

Here we study the radial segregation that occurs in the 

rotary classifier. In most practical cases the length of the 

classifier is larger than the diameter. As has previously 

been shown (Pereira et al, 2011), both axial and radial 

segregation occur in the classifier. However, the axial 

segregation is limited to a region of about 10-15 particle 

diameters from each wall. In the middle region the axial 

segregation does not vary. To limit the numerical size of 

the simulations we consider a thin periodic slice (in the 

axial direction). The periodic length is about 10 particle 

diameters (2 cm) and diameter of the cylinder is 10 cm (so 

R = 5 cm). Particles exiting on one side of the slice then 

re-enter on the opposite side. We firstly consider 

segregation in a mixture where particles differ in density 

and then segregation where particles differ in size. 

Density segregation 

It has been shown that a binary mixture of spherical 

particles in a slowly rotating drum forms a “core” or “sun” 

pattern with the denser particles in the centre and lighter 

ones on the outside (near the cylinder wall). See Pereira et 

al (2011) for typical segregation patterns which can 

evolve.  

Here we use spherical particles with a diameter of 2 mm. 

The lightest particles have a density of 2595 kg/m3 (glass 

density). Densities from here on will be quoted as a 

multiplicative factor of this glass density. In Table 1 we 

give the overall segregation values as well as the 

maximum difference between the equilibrium (radial) 

centroid values for a range of binary mixtures. In these 

simulations (Table 1) the value of Φ varies up to about 
12107   (for large density ratio, i.e. greater than 6). The 

maximum (equilibrium) normalised difference in centroids 

is also given in Table 1.   

 

Particle 

densities  

(based on glass) 

  

(
1210 ) 

R  

1 , 2 4.4572 0.13 

1 , 2.97 5.4325 0.13 

1 , 4.38 6.6117 0.11 

1 , 6 7.1482 0.14 

1 , 8.5 7.0397 0.13 

Table 1: Overall segregation values and maximum 

normalised difference in radial centroids, R, for binary 

density particle mixtures.  

We now consider the segregation for a ternary granular 

mixture, where we have equal volumes of each particle 

type (1/3 each). We consider four combinations of particle 

density (see Table 2). Figure 1a displays the equilibrium 

particle distribution (after 300 secs of rotation) and also 

centroids of the three component mixture consisting of 

particle densities of 1, 2 and 4.38. The blue particles are 

the most dense and segregate predominantly to the 

innermost region, while the yellow particles are least 

dense and segregate to the outermost region (near cylinder 

wall). The red particles are mostly in between the other 

two components. However, their segregation is not 

complete with scattering of yellow into the red region and 

vice versa and scatter of blue particles into the red region 

and vice versa. Note that the segregation is sufficiently 

strong that there are no yellow particles in the core or blue 

particles in the outer yellow region. The densest particles 

(blue) have a centroid value which is negative and 

indicates they are closer in to the centre of the cylinder 

than average. The other two particle types have positive 

centroid values and so are further from the cylinder centre. 

The red and yellow curves are comparatively close 

together which indicates these two particles type are much 

more de-segregated than the blue particles, whose centroid 

curve is far apart from the other two curves. 

 

 
Figure 1: (a) Particle distribution at 305 secs and (b) 

radial centroid values, as a function of time for a 3 

component density mixture. Density are 1.0 (yellow 

particles), 2.0 (red) and 4.38 (blue).  

 

The time dependence of these curves is also interesting. 

For the first 100-150 secs, the particles are migrating 

towards their equilibrium positions. By about 200 secs 

they have reached their equilibrium positions after which 

the only variation in average position is due to the 

periodical rotation of the cylinder (which shows as 

oscillations in the centroid curves). A possible explanation 

for these oscillations is as follows: There is a slight shift in 

the bed (as a whole) during rotation. That is, the bed 

moves slightly clockwise (with cylinder rotation) before it 

b) 

a) 
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slips back (anti-clockwise). The maximum difference 

between centroid values (b/w yellow and blue curves) is 

0.17.  

 

The segregation values, Φ for this case are given in Table 

2. Since there are now more than two components, we 

give a segregation value, Φ, of each component with each 

other component (so for a ternary mixture there will be 

three such values) and also with the sum of other 

components (again for a ternary mixture there are three 

such values). In this way we can determine whether a 

particular component is segregating from one or all of the 

other components. The second column in Table 2 gives 

three segregation values (for particle density 1.0 and 2.0, 

1.0 and 4.38, 2.0 and 4.38), while the third column gives a 

further three segregation values of one component with the 

other two components. The first entry is particles with 

density 1.0 segregating from 2.0 and 4.38, second is for 

density 2.0 segregating from 1.0 and 4.38 and the third is 

density 4.38 segregating from 1.0 and 2.0. One can see 

particle densities 1.0 and 2.0 have a low segregation value 

and so a small amount of segregation. On the other hand, 

the densest particles have the highest segregation value, 

both with each of the other components separately and as 

a whole. All these asymptotic values are consistent with 

both the particle distributions and centroid curves (Fig. 1). 

Table 2: Values of overall segregation and maximum 

difference in centroids, R, for 3 (first four rows) and 4 

(last row) component density particle mixtures. 

 

Three other three-component mixtures were also 

considered (see Table 2). The particle distributions and 

centroid curves are all similar to those shown in Fig. 1. 

The densest particles consistently segregate the best of all 

(based on their value) out of the three components.  In 

all cases a fairly uniform layer of dense particles forms 

near the cylinder walls. There appears to be no systematic 

trend in values or centroid values with increasing 

particle densities (i.e. from one simulation to the next), but 

in future we will investigate this in greater detail. 

 Next consider a mixture of four different particle 

densities. The lightest particle type is glass and the other 

densities are 2.0, 2.97 and 4.38 times that of glass. The 

mixture has equal fractions of each particle type (i.e. 1/4 

by volume each). Figure 2 shows the equilibrium particle 

distribution and radial centroid evolution curves. The 

particle distribution (Fig. 2a) shows much less segregation 

than was observed for the three component mixtures. The 

same general segregation features are demonstrated with 

the densest particles (blue) migrating to the core and least 

dense (yellow) moving to be adjacent to the cylinder wall. 

However, now there is much less segregation between the 

various components. The centroid curve (Fig. 2b) shows a 

general segregation between the various components. The 

top and bottom curves have similar values to the three 

component cases (range is now 0.18 compared 0.17 

previously), which indicates the core and outermost layer 

are similarly segregated as in the ternary mixtures. Any 

differences are now apparent in the two intermediate 

particle density types, which are forced to be close to each 

other. So in this case, by virtue of the fact that there are 

more components, which must necessarily fill the same 

region (c.f. Fig. 1), different components are forced to be 

nearer to each other. 

 

 

 
Figure 2: (a) Particle distribution at 305 secs and (b) 

radial centroid values, as a function of time for a 4 

component density mixture. Densities are 1 (yellow 

particles), 2 (red) 2.97 (light blue) and 4.38 (blue).  

 

The segregation values (see last row in Table 2) for this 

case bears out the fact that the amount of segregation is 

much less significant in this case than for three-component 

mixtures. Even though the densest component has the 

same density as the densest component for the first two 

cases for the three component mixtures (viz, 4.38) it has a 

significantly smaller Φ value (at 2.07 c.f. to 4.02 and 4.98 

for three components). All other components also have 

smaller Φ values than for the three component mixtures. 

Thus the extent of density segregation in the rotary 

classifier for four components is significantly diminished, 

compared to binary and ternary mixtures. We shall discuss 

physical mechanisms for this later. 

Particle 

densities 

(based on 

glass) 

 (
1210 ) 

(with other 

component) 

  1210 ) 

(with sum of 

other 

components) 

R 

1, 2, 4.38 0.29,1.79,2.23 2.08,2.52,4.02 0.17 

1, 2.97, 4.38 0.88,2.75,2.23 3.63,3.12,4.98 0.14 

 1, 2.97, 6 0.39,2.82,1.37 3.21,1.76,4.19 0.165 

1, 4.38, 8.5 0.44,3.05,1.68 3.48,2.12,4.73 0.13 

1, 2, 2.97,  

4.38 

0.09,0.38,1.09, 

0.12,0.68,0.29 

1.57,0.89,0.78,

2.1 

0.18 

a) 

b) 
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Size segregation 

We now consider particles all of the same density (that of 

glass) but with different sizes. The smallest spherical 

particle used had a diameter of 1 mm. We consider 

segregation in binary, 3-component and 4-component 

granular mixtures for a variety of size combinations, (see 

Tables 3 and 4). Firstly we focus on binary mixtures. 

Figure 3 shows the particle distribution and centroids 

variation for this case. The smaller particles segregate 

towards the centre of the cylinder, while larger particles 

move towards the cylinder walls. What is clearly 

noticeable from Fig. 3a is the degree of segregation 

between the two particle types. The regions of red are 

almost completely devoid of yellow and vice-versa. The 

centroids also show a clear and rapid segregation for the 

two components. The maximum difference between the 

two curves is 0.2 and the segregation occurs very rapidly - 

within 60-80 secs or one rotation of the cylinder. 

Particle 

diameter 

(mm) 

  

(
1210 ) 

R 

1, 2 8.1654 0.20 

1, 3 8.6212 0.21 

1, 4 7.4413 0.19 

2,3 6.1124 0.15 

3,4 4.5475 0.12 

Table 3: Values of overall segregation and maximum 

difference in centroids, R, for binary size particle 

mixtures, for various particle diameters. 

The segregation measures for this case (see Table 3) are 

large and are another indication of the strength of the 

segregation. We also considered four other binary size 

combinations, shown in Table 3. They show similar 

behaviour with the smaller particles forming the (inner) 

core and larger particles mainly around the periphery. The 

segregation measures for the three cases with 1 mm 

particles are roughly the same at around 7.5 to 8.5. For 2 

mm/3 mm and 3 mm/4 mm mixtures the amount of 

segregation decreased significantly. This is borne out by 

both the overall segregation and maximum centroid 

differences. 

Next we consider ternary mixtures. The first has equal 

volumes of 1, 2 and 3 mm particles. The equilibrium 

particle distribution (after about 300 secs) and centroid 

curves are given in Fig. 4. There is good segregation 

between all three components with the smallest particles 

(blue) forming the innermost core, underneath this is a 

kidney-bean shaped region of red (2 mm) particles and 

around the outside (nearest to cylinder walls) largest 

particles (yellow). Regions of blue are almost devoid of 

other particles and the kidney-bean shaped region of red 

particles consists almost entirely of 2 mm particles. The 

centroid curves (Fig. 4b) show that segregation is rapid 

(within 100 secs) and the difference between the three 

asymptotic radii is significant. The maximum difference is 

around 0.21 which is comparable to the binary sized-

particle mixtures. The smallest particle centroid curve has 

the largest separation from the other curves and indicates 

the smallest particles segregate best from other particle 

types. The physical mechanism underlying this will be 

discussed later. 

 

 
Figure 3: (a) Particle distribution at 235 secs and (b) time 

variation of the radial centroid location for a binary 

particle size mixture. Particles are 1 mm (red) and 2 mm 

(yellow). 

 

 

Particle 

diameter 

(mm) 

  

(
1210 ) 

(with other 

component) 

   

(
1210 ) 

(with sum of 

other 

components) 

R 

1, 2, 3 3.78,4.81,0.43 8.60,4.21,5.24 0.21 

1, 2, 4 3.66,4,66.0.43 8.32,5.09,4.09 0.22 

1, 2, 3, 4 1.86,2.56,2.73, 

0.25,0.38,0.04 

7.15,2.49, 

2.86,3.16 

0.21 

Table 4: Values of overall segregation and maximum 

difference in centroids, R, for 3 (first two rows) and 4 

component (last row) size particle mixtures, for different 

diameter combinations. 

 

The segregation measures (see first row of Table 4) are 

relatively large between 1 and 2 mm particles and 1 and 3 

mm particles. However, it is much smaller between 2 and 

3 mm particles. There is a region on the left-hand side of 

the cylinder in Fig. 4a, where red and yellow particles are 

have not segregated fully. This is the reason for the low 

segregation value between these two components. Overall 

a) 

b) 
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segregation between the three components is also 

significant (i.e., large) especially for the 1 mm particles. 

The other ternary mixture (1, 2 and 4 mm particle 

diameters) showed very similar results to what we have 

just discussed. The centroid values and segregation values 

were almost identical which indicates segregation is also 

very good for this mixture. 

 

 

 
Figure 4: (a) Particle distribution at 300 secs and (b) 

radial centroid values, as a function of time for a 3- 

particle-sized mixture. Particles sizes are 1 mm (blue), 2 

mm (red) and 3 mm (yellow) particles. 

 

Finally we consider segregation for a 4-component 

mixture consisting of 1, 2, 3 and 4 mm diameter, spherical 

particles. The equilibrium particle distribution (Fig. 5a) 

shows strong segregation for the smallest particles (blue) 

in the innermost core region and fairly good segregation 

for the 2 mm particles (light blue), which are 

predominantly located in a thick band directly below the 1 

mm particle region and in a thin layer on top. The 

segregation for the 3 and 4 mm particles is quite weak. 

Both coarser particle sizes occupy the region closest to the 

cylinder walls. The centroid curves (Fig. 5b) for the two 

largest particle sizes have a significant overlap while the 

other two particle sizes are well separated. The segregation 

measures for this case (bottom row of Table 4) are 

consistent with this description. The first three entries in 

the second column of the bottom row are large and result 

from segregation between 1 and 2 mm, 1 and 3 mm and 

finally 1 and 4 mm particles. This indicates the 1mm 

particles segregate well from all other components (so the 

overall value is also large). The segregation between 2 and 

3 mm particles is much smaller at 0.25
1210  while the 

value between 2 and 4 mm particles is similar. Finally, the 

segregation value between 3 and 4 mm particles is very 

low at 0.04 1210  indicating these two components 

remain quite de-segregated. 

 

 

 

Figure 5: a) Stable segregation pattern in a rotary 

classifier for a 4-component mixture with 4 mm (blue), 3 

mm (blue), 2 mm (red) and 1 mm (yellow) particles. b) 

Radial centroid variation for each size as a function of 

time. In (a) we also point out the head and toe of the bed, 

for later discussion. 

Comparison between size and density segregation 

Generally we have seen the segregation in mixtures 

composed of different sized particles is much stronger 

than for mixtures of different densities. This is 

demonstrated by all the measures we have considered. The 

quantitative measures (maximum centroid values and 

segregation values) are both significantly larger for the 

mixtures which differed by size rather than density. This 

indicates that the driving mechanism for segregation is not 

only different for these two scenarios but it is stronger for 

particles which differ in size compared to those which 

differ in density. 

The other noticeable difference in the segregation 

pattern between these two scenarios is that for particle size 

segregation (2, 3 or 4 components mixtures) the extent of 

a) 

b) 

a) 

b) 
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the segregation is larger. A relatively pure (innermost) 

core and a fairly pure surrounding region of the next 

smallest component are consistently formed. In contrast, 

for mixtures whose particles differ in their density the 

innermost core tend to remain moderately de-segregated 

(see Fig. 1 and especially Fig. 2) while the region near the 

cylinder wall tends to be relatively well segregated. This is 

an important difference and may be useful in any 

applications of these devices. 

For both scenarios the segregation in the rotary 

classifier results in an onion-like pattern of layers. Firstly, 

an innermost core of the densest or smallest particles 

moving out to a layer, furthest from the centre (and closest 

to the cylinder wall), corresponding to the least dense or 

largest particles.  

PHYSICAL MECHANISMS FOR SEGREGATION 

Simulations of multi-component granular mixtures, which 

can differ either in size or density of particles, have 

demonstrated that segregation occurs differently for the 

two material properties. It is well known in binary-sized 

particle mixtures that segregation is driven by percolation 

(small particles flow through the gaps created by larger 

particles). For mixtures whose particles differ in their 

density, segregation is driven by a buoyancy effect (denser 

particles sink deeper into a bed of particles than lighter 

particles). One would expect these are the same driving 

mechanisms for multi-component mixtures. However, we 

need to modify the models of these mechanisms somewhat 

for multi-component mixtures.  

 We first consider the buoyancy mechanism. It has 

been shown (Khakhar et al, 1997) that the important 

region where segregation occurs is a layer of about 10-15 

particles deep along the top surface of the particle bed – 

called the active layer (see Fig. 18 of Pereira et al, 2011). 

At the head (see Fig. 5a) of the particle bed, particles 

which have been transported around the bed (via rotation 

with the cylinder) become free to move (relative to each 

other). They avalanche down the free surface of the bed. It 

is now that the buoyancy mechanism becomes important. 

Denser particles tend to sink into the bed, while the less 

dense flow quickly along the top of the bed, down to the 

toe (see Fig. 5a). The magnitude of segregation is 

proportional to )/1(  , where ρ is the density of the 

particle which has just reached the head of the bed and 

 is the average density of particles in the active layer. 

What this implies for a multi-component case is that the 

average density of the core increases. For example, for a 

sample with particle densities of 1, 2, 2.97 and 4.38, we 

should expect the segregation of the densest particle to be 

equivalent to a binary mixture with a density ratio of about 

2. This would imply a much larger amount of mixing than 

a 1 and 4.38 or 2 and 4.38 binary mixtures. 

For mixtures whose particles differ in size, 

segregation again occurs in the active layer, but now it is 

dominated by the void volume (between particles). The 

active layer, itself, is far more dilated than the rest of the 

particle bed, so has more voids and so more mobility of 

fine particles. This region has a constant influx of 

circulating particles passing through it, so there is 

sufficient free volume for the smaller particles to percolate 

through and join the central core. Hence the segregation of 

the smallest particles will tend to be similar to that in a 

binary mixture. 

CONCLUSIONS 

We have investigated the segregation of multi-component 

granular mixtures in a rotary classifier. We have found 

size segregation tends to be faster and more complete than 

density segregation. A relatively pure core formed in the 

case of size segregation. For density segregation, the 

particles near the cylinder wall are most strongly 

segregated. We have related this to the underlying physical 

mechanisms for segregation. Future work will investigate 

the mechanisms for segregation in greater detail, extend 

our simulations to include axial segregation and also 

consider different fractions of the components in the 

mixtures rather than uniform volume weightings of 

components. 
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