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ABSTRACT

A  Chebyshev  spectral  co-location  and  divergence-free 
method is  adapted to  solve the linearised  Navier-Stokes 
(LNS) equations for time-periodic pipe flow. The method 
is  spectral  in  the  pipe  axis  and  azimuth,  allowing  for 
specific  axial  and  azimuthal  wave  numbers.  A  Krylov 
subspace  method  is  used  to  find  the  leading  (real-part) 
eigenvalues  of  the  LNS  flow  evolution  over  one 
oscillation  period.  We  demonstrate  the  relevance  to 
Floquet Theory and proceed to assess the linear-stability 
of these flows. The outcomes are compared against known 
linear stability results in pipe flows. Finally, an apparent 
discontinuity  in  the  eigenproblem  is  investigated  and 
explained  by its  physical  and numerical  relevance.  This 
investigation lays the ground-work for a validation study 
of recently presented three-dimensional linear instabilities 
in periodic pipe flow.

NOMENCLATURE

A  state-transition operator 
D pipe diameter 
j eigenvalue stack, j=1,2,3...  
J0 Bessel function of the zeroth-order
Kn complex pressure gradient
L linear differential operator 
n frequency harmonic
p pressure
r radial location
R pipe radius
t time 
T period
u primitives velocity (u,v,w)
u' perturbation velocity
v solenoidal velocity
W Solenoidal space
z axial coordinate  
® axial wave number
¯ azimuthal wave number
µ azimuthal coordinate 
 density
º kinematic viscosity
! circular frequency 
¹ Floquet multiplier  
¦0 real pressure gradient

INTRODUCTION

The investigation of time-periodic pipe flows has received 
renewed interest in the past decade. This may be attributed 
to  an  increase  in  computational  power,  advances  in 
spectral methodology (to which the geometry is idealised), 
and the discovery of new autonomous processes in shear 
flow (Enez and Pinelli, 1999). Industrially, these types of 

flows  and  their  transitional  properties  are  of  critical 
interest  in  cardio-related  surgery  where  artificial 
components  are  the  largest  contributor  to  blood 
degradation.  Peristaltic  pumping  of  delicate  suspensions 
and non-Newtonian fluids are also of importance, where 
high shear rates can cause damage to both the fluids and 
the pumping equipment. 

It is believed that steady laminar flow in pipes is stable to 
infinitesimal  perturbations  (Schmidt  and  Henningson, 
2000),  while  channels  are  asymptotically  unstable  at 
Re=5772 for the axial wave-number 1.02 (Orszag, 1971). 
Moderately  careful  experiments  in  pipe  flow  (Hagen-
Poiseuille) demonstrate a transitional Reynolds number of 
the order  2000-3000.  Most  experimental observations in 
this area are related to slug or puff structures, which arrive 
with  increasing  frequency  as  the  Reynolds  number  is 
monotonically increased (at a constant perturbation energy 
level). Similarly, piston-driven experiments for oscillatory 
flows  in  pipes  have  revealed  a  number  of  transitional 
stages, each characterised by macro-scale fluid properties. 
Turbulence associated with these periodic flows comes in 
bursts  –  often  in  the  deceleration,  or  reverse-flow 
component  of  the  cycle  –  is  linked  to  the  governing 
Reynolds number.
 
The initial numerical understanding for periodic pipe flow 
was laid-down by Yang and Yih (1977). Addressing the 
axisymmetric stability problem (2D) it was found that the 
flow tended towards neutral stability in the asymptote of 
Reynolds  number,  and  monotonically  so  for  increasing 
frequency.  Later  axisymmetric  work  by  Fedele  et.  al. 
(2004) using long-wave Orr-Sommerfeld bases confirmed 
the known linear stability of periodic pipe flow.

In  2009  Nebauer  and  Blackburn  (NB09)  revisited  the 
problem to extend  the linear result  to  non-axisymmetric 
(3D) solutions. It was found that an increase in the three-
dimensionality  (in  the  azimuthal  direction)  for  all 
Reynolds numbers studied resulted in an increase in the 
flow stability. The solution space extended that of Yang 
and  Yih  in  both  Reynolds  number  and  frequency 
parameter.  This  extension  confirmed  the  prediction  of 
Yang and Yih that the flow is asymptotically stable to all 
perturbations. 

The stability of oscillatory pipe flow is closely related to 
the stability of oscillatory Stokes layers, and of oscillatory 
channel flow. Instabilities in these flows were recorded by 
Blennerhasset and Bassom (2002 and 2006); in the latter, 
axisymmetric instability of oscillatory pipe flow was also 
reported. Further, Thomas et. al. (2012) recently reported 
non-axisymmetric  instabilities  of  oscillatory  pipe  flow. 
These findings have prompted us to implement a different 
numerical  approach  to  the  study  of  instability  in 
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oscillatory pipe flow than was previously used in NB09. 
The  present  work  focuses  on  the  development  and 
validation of a fully spectral (Chebyshev–Fourier–Fourier) 
LNS solver and its use in studying Floquet instability of 
oscillatory  pipe  flow  using  time-stepper  type  methods 
(Tuckerman and Barkley, 2000).  The solver is based on 
the work of Meseguer and Trefethen (2001) and uses a set 
of divergence-free (DF) basis as  the trial  functions  in  a 
spectral solution. The time-stepper LNS solver is coupled 
to a Krylov-Arnoldi iterative method for Floquet stability 
analysis. 

PROBLEM GEOMETRY AND PARAMETERS

We  start  with  a  regular,  rigid  cylinder  of  radius  R 
(diameter  D) and length  l.  It is completely filled with a 
laminar, viscid and incompressible fluid of density  ½ and 
viscosity º. The governing equation for this system is the 
Navier-Stokes partial differential system;

∂tu  = { u  ⋅ ∇ u  { ∇p + º ∇2
 u  ,  ∇⋅u  = 0.       (1)

Here  p is  the  kinematic  or  modified  pressure  and 
u={u,v,w},  the  primitive  velocities  in  the  radial, 
azimuthal and axial (r,µ,z) directions.

Under a constant pressure gradient and application of the 
no-slip  wall  boundary  condition,  the  system (1)  has  an 
analytical solution:

(2)
The  pressure  gradient ¦0 is  real  and  ∂r represents  the 
partial derivative with respect to r.

A closed-form solution of (1) for time-periodic pipe flows, 
under  a  periodic  pressure  gradient,  can  be  obtained  as 
analytical  Bessel–Fourier  solutions,  first  published  by 
Sexl (1930) and later by Womersley (1955):

(3)
where

Wo = R  (!/º)1/2                         (4)

is  a  dimensionless  frequency  parameter  known  as  the 
Womersley number,  n is a frequency harmonic,  J0 is the 
zeroth-order complex Bessel function, Kn is an associated 
complex axial  pressure gradient  amplitude,  and  T is  the 
period of the oscillation. In the limit as  T grows without 
bound, this analytical solution asymptotes to the standard 
parabolic Hagen-Poiseuille solution for the steady laminar 
flow in a circular pipe, i.e. (2).

The Reynolds number of the flow is based on  the peak 
area-average velocity (see Nebauer and Blackburn 2009) 
and the pipe diameter;

Re = u p D/º                         (5)

Alternative  formulations  of  type  (3)  are  available  for 
differing physical investigations. Harmonic piston or wall-
driven systems vary slightly in their amplitude terms, or by 
the  subtraction  term (in  the  case  of  wall-driven  flow). 
However,  the  underlying  structure  is  a  Bessel  function 
quotient  of a non-dimensional  frequency.  Blennerhassett 

and  Bassom  (2006)  demonstrated  that  such  scaling  is 
immaterial in the linear dynamics – save only in the non-
dimensional representation of the results.  

The stability analysis problem is also solved in primitive 
variables. Starting from (1) it is proposed that u = U + u', 
where U is the base flow whos stability is examined and u' 
is an infinitesimal perturbation, of the form 

u'(r,µ,z) = ei[®z + ¯ µ] u'(r),               (6)

where  ® and  ¯ are  wave  numbers  in  the  axial  and 
azimuthal coordinates respectively. Upon substitution and 
retaining terms linear in  u',  the linearized Navier-Stokes 
equations are obtained:
 

∂t u' = { u' ⋅ ∇ U { U ⋅ ∇ u' { ∇ p' + º ∇2 u' ,   ∇⋅u'=0. (7)

All base flows considered in this study are axisymmetric 
and  invariant  along  the  axis  of  the  pipe.  Hence, 
U={u,v,w} with  u=u(r),  v=0  and  w=0 . Furthermore, 
we note that in the present problem, the base flow is  T-
periodic, i.e. U(t+T) =U(t).

As  in  all  incompressible  flows  the  pressure  is  not  an 
independent variable, and as all terms are linear in u', we 
can  write  this  evolution  equation  in  symbolic  form 
(discarding the prime (') for convenience);

∂tu= L(t)u,                                (8)

where  L is a linear operator with  T-periodic coefficients 
through the influence of the base flow.

Correspondingly the stability of (8) is a linear temporal 
Floquet  problem (Ioose  and  Joseph,  1990).  Writing  the 
state evolution of u over one period as

u(t+T) =A(T)u(t),                         (9)

where A(T) is the system monodromy, or state-transition 
operator, we obtain a Floquet eigenproblem:

A(T)u''j(t)=¹j u''j(t).                       (10)

Here u''j(t)  are phase-specific Floquet modes and ¹j   are 
Floquet  multipliers.  Stability of  the problem is assessed 
from  the  Floquet  multipliers:  unstable  modes  have 
multipliers that lie outside the unit circle in the complex 
plane (i.e. |¹ |>1), while stable modes lie inside (i.e. |¹ |
<1).

A  key  point  about  the  approach  is  that  a  system 
monodromy  matrix  A(T) is  not  explicitly  constructed. 
Rather, a Krylov method is used that is based on repeated 
application of the state transition operator whose action is 
obtained by integrating the LNS equations forward in time 
over interval T. 

NUMERICAL METHODS 

Three methodologies are handled here; a spectral-element 
method cast in either Cartesian or cylindrical coordinates, 
and  a  divergence-free  spectral  method  formulated  in 
Chebyshev polynomials for the non-spectral directions.

Spectral-Element Formulation (SE)

We use a time-stepping based methodology given detailed 
explanation in Barkley et. al. (2008), and previously used 
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in  studies  of  various  oscillatory  flows  (e.g.  Blackburn 
2002 and Blackburn and Sherwin, 2007) in order to solve 
the Floquet  eigenproblem. The time-periodic  base flows 
are precomputed at a moderate number of phase points or 
time-slices  and  then  may  be  accurately  reconstructed 
during timestepping via a Fourier interpolation in time.

Cylindrical Coordinates

Spatial  discretization  and  time  integration  for  both  the 
LNS and  DNS problems is  handled  using  a  cylindrical 
coordinate  spectral  element  method  with  mixed 
explicit/implicit  time stepping,  as  outlined  in  Blackburn 
and  Sherwin  (2004).   The  domain  is  discretized  into 
spectral  elements in  the meridional  semi-plane that  runs 
from  the  pipe  axis  to  the  outer  radius  in  the  radial 
direction  and  a  finite  length  of  pipe  lz in  the  axial 
direction, as shown for example in figure 1. 

Fourier  modal  structure  is  assumed  in  the  orthogonal 
cylindrical  direction.  The  solution  set  is  restricted  to 
integer wavenumbers  ¯,  being 0 for axisymmetric cases. 
In the axial direction we use real wavenumbers    D/l. 
Because of the approach taken to spatial discretization in 
the  axial  direction,  the  Floquet  eigensolution  for  any 
domain  length  can  contain  modes  for  both     (i.e. 
modes that are axially invariant) and   m  D/lz (where m 
is an integer).
  

Figure 1: 2D planar mesh for cylindrical geometry.

Cartesian Coordinates

An alternate approach – and an internal consistency check 
on the cylindrical coordinate formulation – is to retain a 
Cartesian  coordinate  space  for  the  2D  spectral-element 
mesh and allow Fourier modal structure in the pipe-axis 
direction. A circular element mesh (as in figure 2) is used 
with no-slip boundary conditions at the wall. The nature 
of  Fourier  solutions  in  the  axial  direction  implicitly 
applies periodic flow conditions to the cylinder end-caps. 

Figure  2:  Spectral elements of the Cartesian mesh. This 
discretization allows control of the axial wave number, but 
limited influence on the azimuthal wave number.
 

As in  the cylindrical  coordinate  space,  the use of a 2D 
element mesh reduces control over the spectral symmetry 
mode number associated with that plane. For the Cartesian 
space,  we compute  sufficient  leading  modes  to  identify
 ¯ >0 cases, which are typically sub-dominant.   

Spectral Divergence-Free Formulation (DF)

An alternate to,  and in the imposition of  ∇⋅u=0 – as a 
separate Poission solution step – is the use of divergence-
free basis functions. The numerical method we are using 
in  this  case  is  based  on  the  work  of  Meseguer  and 
Trefethen  (2003).  The  original  divergence  free  basis 
methodology is developed in detail by Leonard and Wray 
(1982). 

The  underlying  principle  in  this  solution  space  is  the 
implicit assertion that the three-dimensional flow can be 
constructed from two velocity components, given that the 
divergence  of  that  field  is  confined  to  zero.  Hence,  
v={v1, v2}, from which  a  full  third  component  may be 
calculated.

To develop this concept we note that the operator system 
(8) can be projected by the inner product of the operator  
over a suitable space,

<∂tv, W> = <Lv  , W>,    ∀ W ;                 (11)

here  <⋅ , ⋅>  defines  the  inner  product  over  the  spatial 
domain.  In  the  construction  of  W we  note  that  v  is 
solenoidal  (i.e. divergence  free)  and  the  test  space  W 
should  conform  for  favourable  properties.  This  is  of 
particular  interest  since  <v1,W>  =  <v2,W>  for  all 
solenoidal functions W that vanish over the boundary.

From  (1)  the  pressure  is  imposed  by  ∇p,  which  upon 

projection in W presents as <∇p, W>. Integration by parts 
of this expression yields

<∇p, W> = pW {  <p,∇W>.                  (12)

The  product  pW of  (12) is  zero  provided  W=0  at  the 
boundary. Further more, <p,∇W> = 0 as ∇⋅W=0. Hence, 
the  pressure  has  been  removed  as  a  variable  from the 
system. In addition the Poisson solution (∇⋅u  = 0) step has 
been removed due to the inherent divergence-free nature 
of the basis space W.  

In constructing L we start by defining the matrix evolution 
problem in dual and solenoidal vector space,

Bu t = Au,     B=<W,v>,     A=<W,Lv>      (13)

hence,  L=B{1Au. Subsequently, the classical solution to 
a  time-invariant  base-flow  (such  as  that  of  Hagen-
Poiseuille flow) is interchangeable with 

                  (14)

With this operator notation, it is possible to compare our 
time-stepper  approach  (with  a  time-invariant  base  flow) 
with a direct  eigenvalue decomposition.  To perform the 
temporal integration we use a semi-implicit 2nd order stiff 
solver,  stemming  from  the  numerical  differentiation 
formulas  as  implemented  in  Matlab's  ode15s.  The 
Hagen-Poiseuille  (HP)  stability  problem is  solved using 
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60 Chebyshev radial nodes. Comparison over the leading 
values of the spectrum shows very good alignment, as in 
figure 3. 

Figure 3: Comparative study of the HP spectrum for Re = 
2000,  ®=1 and ¯=0 through direct decomposition of the 
time-invariant  operator  (o)  and  through  temporal 
integration of (13) marked as (x).

Schmid  and  Henningson  (2000)  provide  tabulated 
eigenvalues for HP flow at Re=2000, ®=1  and ¯=0. The 
leading  three  eigenvalues,  as  calculated  by the  two DF 
formulations are compared in table 1.

# Schmid and 
Henningon

Direct Solve 
(14)

Time-Stepper 
(14)

1 -0.0637455 -0.0637455 -0.0637417

2 -0.0637455 -0.0637455 -0.0637442

3 -0.1269911 -0.1269911 -0.1269902

Table 1: Leading three eigenvalues (real-part only)  of HP 
flow: Re = 2000, ®=1, ¯=0  (axisymmetric). Each form of 
(14) is computed. While eigenvalues 1 and 2 are the same 
to printed precision, they do differ, and are not complex-
conjugate modes.

Figure  4:  The  absolute  difference  (|²|)  between  the 
computed eigenvalue for M modes and 100 modes of the 
direct  solution,  as  in  table  1.  Spectral  convergence  is 
observed for both solution types. The 'wiggle' in the high 
modal values is due to the increase in the matrix condition 
number (·).

The spectral convergence of the timestepper methodology 
is demonstrated in figure 4. The plateau at  10{5 is related 
to the repeated application of the high condition-number 
operator matrix, a product of the inversion of  B. Special 
care is taken by Meseguer and Trefethen to energy-weight 
and condition the resulting operator. The same technique 
is not possible for the timestepper approach.

The Time-Dependent Operator
By replacing the base-flow definition of L with one which 
is time-periodic, the only term of (7) affected is the linear 
advection—diffusion  term.  Hence  the  system's  time 
dependence is limited to the advancing inner-products,

<v¿, W> = <L(t) v0 , W>,                  (15)

for any initial solenoidal state  v0 and final state  v¿. The 
weak-form of (7) can then be expressed as an integral over 
a period, T:

  uT =∫ B{1   [W (∇2
 + ∇U(t)⋅u(t) +U(t)⋅∇u(t)) ] u(t)  dt. 

(16)
Therefore,  the  complexity  of  constructing  the  operator 
matrix is linked to the inversion of B. In (16) the operator 
matrices  B, W and  ∇2 are  constant.  Hence,  the 
preconditioning of B{1 is constructed only once. 

Comparison of the DF and SE methodologies

We test the implementation of (16) using the base-flows 
constructed  for  NB09,  as  defined  in  (3),  against  the 
previously published SE results. 

Cylindrical Coordinates

For the least stable case of NB09 (®=0,¯=0 ) we find an 
exact  alignment  of  the  two  solution  methodologies  to 
numerical  precision,  see  figure  5.  These  results  are 
identical to 5 decimal places. From (6), the role of spatial 
wave  numbers  for  this  case  is  eliminated,  and  the 
perturbation  is  confined  to  the  structure  in  u(r).  The 
excellent  agreement  of  this  data  points  towards  the 
successful implementation of centre-line basis and Fourier 
conditions.  

Figure  5:  Axially  invariant,  axisymmetric  (®=0, ¯=0) 
Floquet  Multipliers  for  both  the  SE(o)  and  DF(●) 
formulations, showing the first 3 modes respectively. 

Utilising the azimuthal control this SE space has, we test 
the DF algorithm for three-dimensional wave numbers, in 
the  axially-invariant  domain.  Figure  6 demonstrates  the 
alignment  of  the  two  solution  methodologies,  and 
simultaneously  the  effect  of  an  adaptive-step  temporal 
resolution in the DF method. While the alignment is very 
good  for  higher  Wo,  the  lower  Wo can  suffer  as 
integration times can be large for moderately low Re. The 
adaptive-step,  stiff  solver  used  in  the  DF  is  better 
equipped to navigate around quickly changing state space. 

Figure  6:  Axially  invariant,  non-axisymmetric  (®=0, 
¯>0)  Floquet  Multipliers  for  both  the  SE(●)  and  DF 
methods delineated by ¯=1 (o), ¯=2 (∆) and ¯=3 (□) and 
showing  the  first  mode  only  for  each  azimuthal  wave 
number. 

The  sub-dominant  modes  associated  with  ®>0 are 
compared in figure  7 with the cylindrical coordinate SE 
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method. Again, the difficulties in resolving low Wo flows 
in fixed-step integration are highlighted. As these modes 
are sub-dominant to most axially in-variant cases, a much 
deeper  eigenvalue  search  from  the  Arnoldi  solver  was 
required. 

Figure  7:  Axially  variant,  axisymmetric  (® >  0,   ̄ =0) 
Floquet  Multipliers  for  both  the  SE(*)  and  DF(o) 
formulations. 

The combined effect of sub-dominance and wave-number 
control in the SE method for this parameter space makes 
the alignment for  ®>0 difficult  to observe. However the 
level-locking of  ¹ over  Wo is observed (the SE method 
finds 'a' result in the eigenvalue stack, not necessarily the 
leading one for all cases), and we expect better alignment 
as  integration  time-step  in  the  SE  method  is  tightened, 
currently  at  ¢t=10{3.  The  performance  of  the  DF 
formulation  is  evident,  and  is  an  order  of  magnitude 
cheaper to compute than the SE equivalent. 

Cartesian Coordinates
An  available  internal  consistency  check,  and  better 
validation point for the DF over axial wave-numbers is the 
Cartesian Fourier modal methodology. Figure  8 presents 
the SE results (plotted as o) along with the DF (+ and x). 
Very good alignment of the points is observed, with the 
general trends of the two methodologies in agreement. The 
SE method (having converged an eigenvalue 'stack' for a 
given axial wave number) is plotted as one marker-type 
due to the minimal level of control over azimuthal wave 
number.  An apparent  result,  yet to  be tested as  a  valid  
Floquet mode, is found as ®=0 →  0+. 

Figure 8: Influence of the axial wave number for Wo =10, 
Re = 400/(2¼). Cartesian SE(o) results differ slightly from 
the DF (¯=1; +, and ¯=0; x) for the dominant solutions, 
though offer very good agreement  for  ®=0 and as  ® is 
increased. 

Floquet Mode at ®=0

There is a clear distinction between the leading Floquet 
multiplier  for the axially-invariant cases,  and the rest  of 
the  axial  spectrum.  To  demonstrate  this,  a  log-scale  of 
axial wave-number is used in Figure  9. The continuation 
of the spectrum is observed over  ® to  10{5,  which then 
terminates with an abrupt jump at ®=0. 

As ®→0 the wave length of the disturbance grows without 
bound.  This  is  analogous  with  that  of  the  base-flow's 
period  asymptote to HP flow. This jump in the Floquet 
multiplier  was  found  to  be  synonymous  with  viscid, 
axisymmetric HP flow. 

Figure 9: The log-linear plot of axisymmetric eigenvalues 
for Re=2000, Wo=30 for ®=0 (●) and ®>0 (○). A clear 
continuation as ®→0 of the dominant modes is observed, 
with the apparent mode much removed from the rest.

Figure 10: Floquet  multipliers  (leading  two)  of  the 
apparent mode (○) for  Wo=10, plotted over  Re. A spiral 
mode, ®=1, ¯=1 (●) is viscid, as are all axially-variant, or 
three-dimensional (¯>0) modes. 

This  apparent  discontinuity is  confined  to  axisymmetric 
cases, and then only at axially-invariant wave-number 0. 
This mode is inviscid, being independent of Re     (see figure 
10),  however  it  is  viscous-temporally  dependent, 
demonstrated  by  viscosity  appearing  in  the  Womersley 
number.  The  mode  is  characterised  by  axial-velocity 
structure,  as  determined  by  NB09.  The  axially-variant 
mode  for  ®=0.1 is  clearly  very different,  a  high  swirl 
mode, with little axial-velocity component (figure 11). 

The  presence  of  the  apparent  mode  in  all  three  of  the 
calculation methodologies (based on two separate solution 
procedures)  is  one  indication  that  the  Fourier  parity 
conditions at the pipe centre-line have been implemented 
correctly in the DF formulation. 

Spurious  modes are known to  exist  in  many eigenvalue 
studies,  including Floquet  related cases,  where the meta 
field is (or near) autonomous (see Elston  et. al.  2004). A 
physical example is the spring-mass system, which has a 
leading autonomous Floquet multiplier of 1.

The oscillatory pipe  flow is  analogous to  a sping-mass-
damper system, which offers a physical explanation of a 
damped  autonomous  mode.  An  alternate  physical 
reasoning occurs in the limit of pipe-length (®=0). Here, 
swirl  modes  switch  off  and  give  way  to  axial-modes, 
giving rise to a discontinuity when there is no mechanism 
available  over  a  period  to  misalign the linear operator's 
eigenspace with the fluid. 

Such  near-wall  and  centre-line  structure  of  the 
eigennmodes  can  be  found  in  modes  which  are 
considerably sub-dominant. One example is the 4th mode 
of ®=1, ¯=3 for Wo=10, which is the subject of a DNS 
study, and lies outside the scope of this paper. The mode's 
iso-contours of axial velocity component (+ out of page, - 
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into)  is  shown in  figure  12.  A case for  large transient-
growth of these decaying modes, with clear inflection and 
wall structures, can be made, and is again, a topic outside 
the scope of this paper. 

Figure 11: Surface  plots  of  the  leading  (least-stable) 
Floquet Modes for Wo=10, Re=1000, ¯=0, ®=0 (a) and 
®=0.1 (b), as projected into axial (u) and azimuthal (w) 
velocity components. Here, a swirl-mode (b) is reduced to 
a non-swirl mode (a), both of which have little or no radial 
component.

Figure 12: The 3rd sub-dominent (4th mode) eigenvector of 
Wo=10 , Re=1000  for ¯ = 3, ® = 1. 

CONCLUSION

A  spectral  collocation  method  has  been  modified  to 
compute the Floquet stability of time-periodic pipe flow. 
The  key advantage of  the  new methodology lies  in  the 
divergence-free basis functions used. Through application 
of  the  solenoidal  space  the  unique  mathematical 
conditions are provided for the elimination of the pressure 
state  space.  Not  only  is  the  variable  removed from the 
system, but the requirement to entertain a Poisson sub-step 
is also avoided.

The  methodology  has  been  tested  against  known  time-
invariant, and periodic stability cases and found to agree 
favourably.  The  flexibility  of  the  new  method  is  also 
evident  in  complete  control  over  the  spatial  wave 
numbers. 

Using this high fidelity solver we are now proceeding to 
provide  a  comprehensive  check  of  linear  instabilities 
previously reported in the literature. 
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