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ABSTRACT 

Traditional Reynolds-averaged Navier-Stokes (RANS) 

approaches to turbulence modelling, such as the k-ϵ 

model, has some well-known shortcomings when 

modelling transient flow phenomena. To mitigate this, a 

filtered URANS model has been derived where turbulent 

structures larger than a given filter size (typically grid 

size) is captured by the flow equations and smaller 

structures are modelled according to a modified k-ϵ model. 

This modelling approach is also known as a VLES model 

(Very Large Eddy Scale model), and provides more details 

of the transient turbulence than the k-ϵ model at little extra 

computational cost. 

 

In this study a two-phase extension to the VLES model is 

described. A modelling concept for bubble plumes has 

been developed in which the bubbles are tracked as 

particles and the flow of liquid is solved by the Navier-

Stokes equations in a traditional mesh based approach. 

The flow of bubbles and liquid is coupled in an Eulerian-

Lagrangian model. Turbulent dispersion of the bubbles is 

treated by a random walk model. The random walk model 

depends on an estimation of the eddy life time. The eddy 

life time for the VLES model differs from a k-ϵ model, 

and its mathematical expression is derived. 

 

The model is applied to ocean plumes emanating from 

discharge of gas at the ocean floor. Validation with 

experiments and comparison with k-ϵ model are shown. 

 

 

NOMENCLATURE 

b plume radius [m] 

d diameter [m] 

C coefficient [ ] 

F force per mass [N/kg] 

g coefficient of gravity [m/s2] 

k turbulent kinetic energy [m2/s2] 

l length scale [m] 

M molecular weight [kg/mole] 

m mass of [kg] 

p pressure [Pa] 

U average velocity [m/s] 

u  velocity [m/s] 

𝑢′ velocity fluctuations [m/s] 

R gas constant [J/K mol] 

r radius [m] 

Re Reynolds number [ ] 

S momentum source term [N/m3] 

T temperature [K] 

t time [s] 

V volume [m3] 

z height above release source [m] 

 

α volume fraction [ ] 

Δ filter size [m] 

ϵ turbulent dissipation rate [m2/s3] 

ξ random number 

 dynamic viscosity [Pa s] 

ν kinematic viscosity [m2/s] 

 density [kg/m3] 

σ surface tension [N/m] 

τ time scale [s] 

 
Indexes 

b bubble 

c computational cell, centre 

cb coalescence and break up 

e eddy 

eff effective 

D drag 

t turbulence 

VM virtual mass 

Δ sub-filter quantities 

 

 

 
 

 

Figure 1: Bubble plume in ocean. 
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INTRODUCTION 

Bubble plumes are found in various industrial processes, 

in coastal and harbour facilities and in natural and 

accidental subsea discharges. Accurate mathematical 

predictions of their behaviour enable cost effective process 

optimization and reliable risk assessments.  

Mathematical modelling of bubble plumes dates back to 

WWII (Morton et al., 1956)1 when classical models for 

buoyant plumes were developed. These models have later 

been enhanced to include more relevant physics such as 

gas expansion, two phase effects and gas dissolution. The 

models assume a profile (typically Gaussian) for the 

vertical velocity and the volume fraction of bubbles. An 

integration of the conservation equations for mass and 

momentum is integrated in the radial direction creating a 

1D set of equations. The models are thus also known as 

integral models. 

CFD became a viable tool for two-phase flows during the 

1980's enabling modelling of bubble plumes. Schwarz and 

Turner (1988) developed an Eulerian-Eulerian model for 

bubble plumes in metal reactors. Euler-Lagrangian 

approaches were also developed in the 1980's. Johansen 

and Boysan (1988) published an axisymmetric model for 

bubble plumes in reactors. It has been argued that in full 

3D and for relevant gas release rates, Lagrangian tracking 

of the resulting number of bubbles is very demanding on 

computer resources, and thus an Eulerian-Eulerian 

approach is preferable for a bubble plumes with a huge 

quantity of bubbles. Swan and Moros (1993) solved this 

issue by tracking groups of bubbles instead of individual 

bubbles. They adopted the technique in an axisymmetric 

model for subsea blowouts similar to Johansen and 

Boysan (1988). 

Fully 3D modelling based on the Eulerian-Lagrangian 

approach was demonstrated by Cloete et al. (2009) to 

accurately reproduce experimental results from pool 

experiments. The Eulerian-Lagrangian modelling concept 

is based on a VOF (volume of fluid) model for capturing 

the flow in the continuous phases and the interphase 

between the continuous phases, and a discrete phase 

model, DPM, for tracking the bubble motion. The bubbles 

are tracked in parcels representing many bubbles (or 

particles) where all bubbles share the same properties 

similar to Swan and Moros (1993). Thus the VOF-DPM 

approach is computationally affordable.  

 

Most of these two-phase models deploy a k-ϵ model for 

quantifying the turbulence in the flow. The model is robust 

and computationally affordable, but is known to fail on 

predictions of certain aspects of transient behaviour. The 

LES model is better suited for transient flow. However, 

the computational cost can become substantial. Thus a 

more affordable modelling approach for turbulence in 

transient flows has been proposed which inherently 

captures the larger turbulent structures. It is known as a 

VLES model (very large eddy scale). In the following 

chapter we describe the Eulerian-Lagrangian modelling 

concept for bubble plumes and how a VLES model is 

coupled to the modelling concept.  

 

 

 

                                                                 
1 The work was initiated prior to WWII, but published 

much later. 

MODEL DESCRIPTION 

A bubble plume model calculates the flow of bubbles, 

liquids and if necessary gas above liquids. In a Lagrangian 

framework the bubbles move according to Newton's 

second law. The bubble acceleration is given by a force 

balance: 

 𝑑𝒖𝑏

𝑑𝑡
=

𝒈(𝜌𝑏 − 𝜌)

𝜌𝑏
+ 𝑭𝐷 + 𝑭𝑉𝑀    (1) 

The first term on the right hand side is the specific 

buoyancy force (force divided by bubble mass). The other 

forces are drag and virtual mass force. The specific drag 

force is 

 
𝑭𝐷 =

18

𝜌𝑏𝑑𝑏
2

𝐶𝐷Re

24
(𝒖𝑏 − 𝒖)   (2) 

where CD  is the drag coefficient, Re is the Reynolds 

number, ρb is the density of the bubble gas and db is the 

bubble diameter. The driving mechanism of the drag force 

is the velocity difference between the bubbles and the 

liquid 𝒖𝑏 − 𝒖. Note that u is the instantaneous velocity of 

the background fluid 

 𝒖 = 𝑼 + 𝒖′   (3) 

accounting for both the average velocity U  and the 

turbulent fluctuations 𝒖′. The turbulent fluctuations in the 

drag force cause turbulent dispersion. As in all models not 

resolving the turbulence, the turbulent dispersion is 

calculated by a sub-model. For Lagrangian tracking of 

bubbles (or particles) we apply a random walk model 

(Gosman & Ioannides, 1983) in which the turbulent 

velocity fluctuations is calculated by 

 𝒖′ = 𝝃√𝑘   (4) 

if a k-ϵ turbulence model is deployed. Here 𝝃 is a random 

number and k  is the turbulent kinetic energy. The time of 

which this velocity fluctuation is applied in the integration 

of the bubble trajectory is limited by the eddy lifetime (or 

the time it takes for a bubble to traverse through a 

turbulent eddy). The eddy lifetime is   

 
 𝜏𝑒 = 0.15

𝑘

𝜖
    (5) 

for a k-ϵ model. The drag coefficient is provided by the 

expression of Tomiyama et al. (1998) for contaminated 

conditions with a correction for bubble interactions at 

higher volume fractions based on Tsuji et al. (1982). 

 

Virtual mass force also known as added mass force is the 

force added to a bubble because an accelerating body is 

deflecting some volume of the surrounding fluid as it 

moves through it. The specific force is given as 

 
𝑭𝑉𝑀 = 𝐶𝑉𝑀

𝜌

𝜌𝑏
(

𝐷𝒖

𝐷𝑡
−

𝑑𝒖𝑏

𝑑𝑡
)   (6) 

where 𝐶𝑉𝑀 = 0.5 is the virtual mass coefficient. Lift force 

is normally included in reactor modelling, but sensitivity 

studies show no effect of the lift force in typical bubble 

plumes in open waters. This is due to the absence of walls 

close to the bubbles. In such scenarios the shear rate is 

relatively small and the lift force can be discarded (Olsen 

& Popescu, 2014). 

 

The bubble size in dense plumes is assumed to be 

governed by turbulence break up and coalescence. In more 
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dilute plumes mass transfer and gas expansion due to 

pressure gradients will dominate. A bubble size model for 

an Eulerian framework accounting for break up and 

coalescence was developed by Laux and Johansen (1999). 

When recasting this model into a Lagrangian concept and 

including the effect of mass transfer and gas expansion the 

bubble size is given by the following differential equation 

 
𝑑̇𝑏 =

𝑑𝑏
𝑒𝑞

− 𝑑𝑏

𝜏𝑐𝑏
+

𝑑𝑏

3
(

𝑚̇𝑏

𝑚𝑏
−

𝜌̇𝑏

𝜌𝑏
)   (7) 

Here 𝑚𝑏 is the mass of a bubble, 𝑚̇𝑏 is the mass transfer 

rate from a bubble, 𝜌̇𝑏 is the Lagrangian time derivative of 

the bubble density, 𝜏𝑐𝑏  is the time scale for coalescence or 

break up and 𝑑𝑏
𝑒𝑞

 is the bubble diameter obtained by a 

bubble if it is exposed to given flow conditions (turbulent 

dissipation and plume density) for a sufficient time (i.e 

equilibrium is reached). This equilibrium bubble diameter 

is  

 
𝑑𝑏

𝑒𝑞
= 𝐶1√𝛼

(𝜎
𝜌⁄ )

0.6

𝜖0.4
(

𝜇𝑏

𝜇
)

0.25

+ 𝐶2   (8) 

where 𝛼 is the volume fraction of bubbles, 𝜎 is the surface 

tension and ϵ is the turbulent energy dissipation. For the 

model coefficients we assume 𝐶1 = 4.0 (typical for 

bubbles in liquids) and 𝐶2 = 200 𝜇m (smallest expected 

bubble size). For further details, including time scale for 

coalescence or break up, refer to Laux and Johansen 

(1999).  

 

The bubble (i.e. gas) density and its derivatives is 

governed by the compressibility of gas (i.e. pressure 

dependence). Since bubbles normally rise in water towards 

a lower hydrostatic pressure, we frequently describes this 

as gas expansion. The gas density is a function of pressure 

and for moderate depths we apply the ideal gas law 

 
𝜌𝑏 =

𝑀𝑏𝑝

𝑅𝑇
   (9) 

Here p is pressure, 𝑀𝑏 is molecular weight of gas in 

bubble, R is the gas constant and T is temperature. For 

deeper plumes (typically below 200 meters) higher order 

correlations are required.  

 

The motion of the bubbles is coupled to the flow of the 

background fluid. The background fluid is a liquid with a 

gas on top as illustrated in Figure 1. The bubbles are 

removed upon entering the gas phase. An Eulerian VOF 

method conserving mass and momentum through the 

Navier-Stokes equations is deployed to calculate the flow 

of the continuous background phases (Hirt & Nichols, 

1981). The interface between the continuous liquid and 

gas phases are tracked by the GEO reconstruct scheme 

(Youngs, 1982). The coupling with the Lagrangian 

bubbles is achieved through a source term in the 

momentum equation accounting for bubble drag 

 
𝜌

𝐷𝐔

𝐷𝑡
= 𝜌𝒈 − ∇𝑝 + ∇ ∙ [𝜇eff(∇𝑼 + ∇𝑼𝑇)] + 𝑺𝑏 

  
(10) 

where 𝜇eff is the effective viscosity (molecular + 

turbulent) and 𝑆𝑏 is the source term due to drag of bubbles 

 
𝑺𝑏 = ∑

18𝜇𝐶𝐷Re

24𝜌𝑏𝑑𝑏
2

(𝒖𝑏 − 𝒖)𝑚̇𝑏

Δ𝑡

Δ𝑉𝑐
 

  
(11) 

Here Δ𝑡  is the time step and Δ𝑉𝑐 is the volume of the 

computational cell. Turbulence and turbulent viscosity is 

accounted for by the standard k-ϵ model (Launder & 

Spalding, 1974). Turbulence is damped at the interface 

between the continuous liquid phase and the gas phase 

above because turbulent structures are not carried through 

the interface. This is not inherently accounted for by VOF 

models since the interfaces are not treated as boundaries. 

Thus a source term in the dissipation equation for 

turbulence is added to increase dissipation and dampen 

turbulence at the interface (Pan et al., 2014).  

 
VLES model 

Modelling turbulence by a RANS approach (e.g. k-ϵ 

model) is quite common in engineering computations of 

turbulent flows. The models are robust and 

computationally affordable, but have some well-known 

deficiencies for transient flows. LES modelling is an 

alternative, but is computationally quite expensive. By 

introducing a filter in an unsteady RANS approach 

Johansen et al. (2004) developed an affordable transient 

turbulence model. The model captures the turbulent 

structures above a given filter size by the momentum 

equations and leaves the remaining turbulent spectrum to a 

sub-filter model similar to a RANS model. Thus less of 

the turbulence spectrum is left to the model assumptions 

of the RANS approach. The turbulence model is known as 

a VLES model (very large eddy scale) and has later been 

adopted by others, e.g. Labois and Lakehal (2011).   

 

Johansen et al. (2004) showed by filtering the turbulence 

spectrum that the kinetic viscosity is 

 
 𝜈𝑡 = 𝐶𝜇  

𝑘Δ
2

𝜖Δ
 ∙ MIN [1 ;  

Δ 𝜖Δ

𝑘Δ
3/2

] 
  

(12) 

if a filter size Δ for the turbulence is applied. The subscript 

Δ on k and ϵ indicate that the turbulence model only 

captures the turbulence spectrum below the filter size. The 

large scale turbulence is captured by the momentum 

equation.  We see that for large filter sizes the turbulent 

viscosity is given by the sub-filter model. With a standard 

k-ϵ model as the sub-filter model, the VLES model is 

defined by Eq.(12) and the partial differential equations 

for kinetic energy and energy dissipation of the k-ϵ model. 

We apply the grid size as the filter size Δ. Thus for coarse 

grids most of the turbulence is maintained by the sub-filter 

model (u' ), and for finer grids more of the turbulence is 

maintained within the velocity field governed by the 

momentum equations (U).  

 

In order to apply the VLES model in an Eulerian-

Lagrangian modelling framework an expression for the 

eddy time scale is required for the random walk model, i.e. 

Eq.(5) needs to be modified. Eddy lifetime for non-

resolved turbulence is 

 
𝜏e∆

=
3

2

𝜈t

𝑘∆
=

3

2
𝐶𝜇  

𝑘∆

𝜖Δ
 ∙ MIN [1 ;  

Δ 𝜖Δ

𝑘Δ
3/2

] 
  

(13) 

The subindex Δ in the above equation indicates that the 

kinetic energy and dissipation is based on the turbulent 

energy residing within the length scales of the filter. 

 

The modelling concept is implemented in ANSYS/Fluent 

14.0. The PISO scheme is applied for pressure-velocity 

coupling, spatial discretization are second order or higher 

and the time discretization is implicit first order. The PISO 

scheme is normally robust with fast convergence.  
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k-ϵ model at 𝑚̇=0.03 kg/s 

 
k-ϵ model at 𝑚̇=0.14 kg/s 

 
k-ϵ model at 𝑚̇=0.34 kg/s 

 
k-ϵ model at 𝑚̇=0.71 kg/s 

 

VLES model at 𝑚̇=0.03 kg/s 

 
VLES model at 𝑚̇=0.14 kg/s 

 
VLES model at 𝑚̇=0.34 kg/s 

 
VLES model at 𝑚̇=0.71 kg/s 

 

 

Figure 2: Plume shapes coloured by bubble distance out of the image plane for different gas rates and turbulence models. 

Blue equals 0 meter and red equals 8 meters. 
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RESULTS 

The above modelling concept has been applied to a series 

of gas releases from 50 meters depth. This is equivalent to 

the cases presented in the experimental study of Milgram 

(1983) who released air at gas rates of 0.03, 0.14, 0.34 and 

0.71 kg/s in a sink hole in Florida. The bubble plumes 

achieved after a quasi-steady state is reached are shown in 

Figure 2. Results for both VLES and k-ϵ turbulence 

models are compared. We see how the results with the k-ϵ 

model reflect the averaged nature of the turbulence model 

with clear cone shaped plumes. The plume shapes of the 

VLES model include turbulent structures typically 

observed in experiments. These observations do not 

necessarily support that the VLES model is superior, as a 

time average of the VLES model might result in the same 

plume shapes as for the k-ϵ model.  

 

Qualitatively we see that the VLES model captures more 

of the turbulent structures. This is also confirmed by 

Figure 3 where the vertical velocity midway between 

release source and water surface is plotted. The k-ϵ model 

produces a typical averaged velocity plot with very small 

fluctuations. The VLES model reproduces the larger 

velocity fluctuations as expected from this kind of 

turbulence model. 

 

The model results can also be compared quantitatively 

with the experimental results of Milgram (1983). Milgram 

measured velocities at different heights above the release 

source and fitted the measurement to Gaussian velocity 

profiles 

 
𝑈(𝑧, 𝑟) = 𝑈𝑐(𝑧) ∙ exp (− 𝑟2 𝑏(𝑧)2 ⁄ ) 

  
(14) 

 

 

 

 

 

 

 

 

 
 

Figure 3: Vertical velocity 25 meters above release point 

at an arbitrary time period after steady state is established. 

 

 

 
 

Figure 4: Plume angle as function of gas rate. 

 

where the plume radius, b, and the axis velocity, Uc,, 
varies with distance, z, above the release source. By 

defining a plume angle based on the plume radius 43.9 

meters above the release source, quantitative comparisons 

are made between experiments and the two turbulence 

models. The results are seen in Figure 4. We see that the 

k-ϵ model do not capture the trend of the experimental 

values. The VLES model captures the trend, but 

underpredicts the plume angle by roughly 10-15%. The 

deviation between the VLES model and the experiments 

are smaller at the lower gas rates.  

SUMMARY AND DISCUSSION 

An Eulerian-Lagrangian modelling concept for bubble 

plumes has been presented. A VLES turbulence model has 

been introduced into the modelling concept. When 

compared to a k-ϵ model, the VLES model captures more 

of the turbulence spectrum inherently and leaves less of 

the spectrum to the model assumptions of the sub-filter 

turbulence model. When comparing the model with 

experimental results of a series of gas discharges in a sink 

hole from a depth of 50 meters, we find that the VLES 

model is more consistent with the experimental 

observations than the k-ϵ model.  

 

The VLES model underpredicts the plume angle 

somewhat. Two possible reasons have been identified. 

Firstly it should be emphasized that the model does not 

properly resolve the flow close to the release source. 

Underprediction of the plume spreading in this region will 

be carried along with the plume all the way to the surface.  

Secondly bubble induced turbulence is not accounted for. 

Bubble induced turbulence will create more spreading of 

the plume. Thus future efforts will focus on bubble 

induced turbulence and the ability to capture more of the 

physics close to the release source. 
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