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ABSTRACT 

Particle-particle contact laws and particles size 

distributions determine the macroscopic simulation results 

in Discrete Element Method (DEM). Commonly, contact 

laws depend on semi-empirical parameters which are 

difficult to obtain by direct microscopic measurements. 

Consequently, macroscopic experiments are performed, 

and the relationship between their results and microscopic 

DEM simulation is investigated. 

We present a method for the identification of DEM 

simulation parameters though macroscopic experiments 

and dedicated artificial neural networks. First, a feed-

forward artificial neural network is trained by backward 

propagation reinforcement thanks to the macroscopic 

results of a series of DEM simulations, each with a 

different set of particle-based simulation parameters and 

individual particle distributions. We subsequently utilize 

this artificial neural network to forecast the macroscopic 

ensemble behaviour in relation to additional sets of 

particle-based simulation parameters and particle 

distributions. By this method, a comprehensive database 

was established, relating particle-based simulation 

parameters to macroscopic ensemble output. If compared 

to an experiment of a specific granular material, this 

database identifies valid sets of DEM parameters which 

lead to the same macroscopic results as observed in the 

experiments. Finally, we applied this method of DEM 

parameter identification to an industrial scale process of 

iron ore sintering. 

NOMENCLATURE 

Greek Symbols 

t  time step, [s] 

  coefficient of friction, [-] 

   Poisson ratio, [-] 

  mass density, [kg/m3] 

  stress, [Pa] 

  shear stress, [Pa] 
 

Latin Symbols 

AOR  angle of repose, [-] 

COR  coefficient of restitution, [-] 

E   Young’s modulus, [N/m2] 

R  radius of the particle, [m] 
 

Sub/superscripts 

b   bulk 

n  normal 

p  particle 

psh   pre-shear 

u   velocity 

s   sliding 

sh   shear 

t   tangential 

INTRODUCTION 

Particles in various forms - ranging from raw materials to 

food grains and pharmaceutical powders - play a major 

role in a variety of industries. Discrete Element Methods 

(DEMs) are widely used to simulate particle behaviour in 

these granular processes (Cleary, Sawley 2002). 

In their original formulation of DEM, Cundall and Strack 

(1979) allowed two particles to slightly overlap upon 

contact, and consequently they proposed repulsive forces 

in relation to this overlap distance. Their fundamental 

modelling concept has since been widely accepted in the 

literature and their soft-sphere contact law has been 

developed further by numerous researchers (Vu-Quoc, 

Zhang 1999, Di Renzo, Di Maio 2004). With increasing 

computational resources, DEM simulation have become 

very popular giving rise to the development of commercial 

(e.g., PFC3D, used by Wensrich and Katterfeld (2012)) 

and open-source software (e.g., LIGGGHTS, (Kloss, 

Goniva et al. 2012, Aigner, Schneiderbauer et al. 2013)). 

Soft-sphere DEM simulations of thousands of particles 

have been proven to faithfully model particle bulk 

behaviour (Kloss, Goniva et al. 2012).  

In these macroscopic DEM simulations, the contact law 

kernel between a pair of particles determines the global 

bulk behaviour of the granular material (Ai, Chen et al. 

2011). As a consequence, defining a correct contact law is 

of crucial importance for the predictive capability of DEM 

simulations. Since DEM contact laws are based on a set of 

semi-empirical parameters, correct contact law parameters 

must be defined for a given granular material or DEM 

simulations will fail (Combarros, Feise et al. 2014). 

Identifying DEM contact law parameters is not a trivial 

task. Due to the huge number of particles in a granular 

material, it may be impractical to identify valid parameter 

sets by performing bilateral particle collision experiments. 

Furthermore, some contact law parameters such as the 

coefficient of rolling friction are purely empirical and 

cannot be determined by direct particle-to-particle 

measurements (Wensrich, Katterfeld 2012). Therefore, 

DEM contact law parameters are commonly determined by 

comparing the macroscopic outcome of large-scale DEM 

simulations with bulk experiments (Alenzi, Marinack et al. 

2013). If DEM simulation results disagree with bulk 

measurements, the set of contact law parameters must be 

adjusted until reasonable agreement is achieved. 
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However, this purely forward methodology of parameter 

identification is limited by the multi-dimensionality of the 

parameter space and the associated computational costs of 

the required DEM test simulations. Moreover, one 

parameter set which is valid for one bulk behaviour (e.g., 

angle of repose) might fail for another (e.g., shear tester). 

Clearly, there is a need for an efficient method for 

identifying DEM contact law parameters. In our study, we 

harnessed Artificial Neural Networks (ANNs) in order to 

reduce the number of DEM test simulations required. 

ANNs have proven to be a versatile tool in analysing 

complex, non-linear systems of multi-dimensional input 

streams (Vaferi, Samimi et al. 2014). In our case, we fed 

an ANN with DEM contact law parameters as input and 

compared the output with the bulk behaviour predicted by 

a corresponding DEM simulation. The difference between 

ANN prediction and DEM prediction is used to train our 

specific ANN with a backward-propagation algorithm 

(described further below). After a training phase 

comprising a limited number of DEM test simulations, the 

ANN can then be used as a stand-alone prediction tool for 

the bulk behaviour of a granular material in relation to 

DEM contact law parameters. 

In this study, we applied this parameter identification 

method to two different granular bulk behaviours, namely 

the angle of repose (AoR) test and the Schulze shear cell 

(SSC) test. In both cases, we first trained a specific ANN 

using a number of DEM test simulations before we 

identified valid sets of DEM contact law parameters by 

comparing the stand-alone ANN predictions with 

corresponding bulk experiments. The ANN is validated 

thanks to standard statistical methods. For both cases we 

obtained valid sets of contact law parameters, which we 

then compared to formulate a reliable contact law for a 

given granular material. We further show that these data 

can be used to model an industrial scale process of iron 

ore sintering.  

In the next section we define some prerequisites including 

DEM contact law definitions, a general description of the 

ANN functionality, and the proposed method of DEM 

contact law parameter identification. We then describe 

how it is applied to characterize the DEM contact law 

parameters of sinter fines. 

DEM PARAMETER IDENTIFICATION 

 

 

Figure 1: Method. 
 

As can be seen in Figure 1, in the training phase (dashed 

lines) DEM simulations are performed with random initial 

input parameters. The behaviours obtained are used to 

train the Artificial Neural Networks (ANNs) in a loop that 

continues until the difference between the outputs of each 

ANN and its simulations is below the limit (). In the 

parameters identification phase (solid lines) we identify 

valid input parameters by comparing (=) ANNs and 

experimental behaviours. 

Discrete element method 
 

Mean 

R 

(mm) 

Std. dev 

R 

(mm) 

Young’s 

modulus 

(MPa) 

Poisson’s 

ratio 

(-) 

t 

 

(s) 

0.732 0.410 10.0 0.400 10-6 

Table 1: DEM fixed input values. 
 

We decided to utilize a single contact law for all the 

simulations performed (Benvenuti, Kloss et al.). The DEM 

parameters for the Young's modulus (E) and the Poisson's 

coefficient () were taken from the literature (Tsafnat, 

Amanat et al. 2011); however we reduced the former to 

increase the time step (t), following the 

recommendations of Ai, Chen et al. (2011). The time step 

was between 1.29% and 1.53% of the Rayleigh time, 

which also depends on the particle density (p). 

Furthermore, we locked the size distribution, which was 

obtained by experimental sieving, see Table 1. In the 

contact law we used, the tangential component of the 

contact force between two generic particles (Ft) is 

truncated to fulfil: 

nst FF           (1) 

where Fn is the normal component and s is the coefficient 

of sliding friction, one of the particle-based DEM 

parameter we investigated, another being the coefficient of 

rolling friction (r). For coarse non-spherical particles, this 

is a critical parameter and describes inter-particle friction 

in medium to dense granular flow simulations. It is 

proportional to the torque counteracting the rotation of the 

particle. The r parameter enters the equations according 

to the elasto-rolling resistance model presented by Ai, 

Chen et al. (2011) and Wensrich and Katterfeld (2012). 

The model is called EPSD2 in LIGGGHTS and is 

appropriate for both one-way and cyclical rolling cases. 

The maximum magnitude of rolling resistance torque: 

nrrr FRT
~

max           (2) 

where Rr is the equivalent radius and Fn the normal force. 

The last two particle-based DEM parameters we 

investigated were p and the coefficient of restitution 

(COR) as defined by Ai, Chen et al. (2011). These 

coefficients, COR, s, r, p and dCylDp (the cylinder 

dimension, proportional to the mean particle diameter), as 

indicated in Table 2, were constant in each simulation, but 

their combination differed between simulations. Further, 

dCylDp was used to evaluate the wall effect, but only 10% 

of the simulations had a dCylDp larger than 20 

(Benvenuti, Kloss et al.). The normal stress n and its 

percentage during the incipient flow condition % varied to 

replicate twelve shear-cell load conditions. The complete 

description of the shear-cell and the AoR simulations can 

be found in Benvenuti, Kloss et al. and Benvenuti, Aigner 

et al. (2014). A Matlab script allowed us to extract from 

the simulation output the numerical values representative 

of bulk behaviour (hereafter called bulk values) for each 

DEM simulation parameter combination, which consists 

of bulk density (b), coefficient of internal friction in the 

pre-shear phase (psh), coefficient of internal friction in the 

shear phase (sh), and angle of repose (AoR). During the 

shear cell test the first bulk value (b) was provided 

directly. First, the n was kept constant while the 

coefficient of internal friction (ie) initially increased and 

then reached a plateau. The second bulk value (psh) was 
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calculated as the average of the ie in this plateau. The n 

was then automatically reduced, e.g. to 80% of its initial 

value. Subsequently, a second plateau developed. We 

obtained the third value (sh) as the average of ie in this 

second plateau.  

In the AoR tests the average of the repose angles provided 

us with the fourth bulk value, allowing us to define the 

numerical bulk behaviour. 

 

s 

(-) 

r 

(-) 

COR 

(-) 
p 

(kg/m3) 

DCylDp 

(-) 

0.4 / 0.6 / 

0.8 

0.4 / 0.6 

/ 0.8 

0.5 / 0.7 / 

0.9 

2500 / 3000 

/ 3500 

20 / 36 / 

38 / 40 

Table 2: DEM variable input values for training the 

Artificial Neural Networks. 

Artificial Neural Networks 

 s 

(-) 

r 

(mm) 

COR 

(-) 
p 

(kg/m3) 

Range [0.1…1.0] [0.1… 1.0] [0.5… 0.9] [2500… 

3500] 

No. of 

values 

100 100 25 25 

Table 3: DEM random input values. Within each range 

the indicated number of random values was chosen 

according to a standard uniform distribution. 

 

Figure 2: Scheme of how the Multilayer Perceptron ANN 

(MLPNN) derives one bulk-behaviour-dependent variable 

from the mutually independent simulation variables. 

 

We first defined the typology of Artificial Neural 

Networks (ANNs) we used and the input we fed them 

(Benvenuti, Kloss et al.). Our ANNs have three different 

layers: the input layer has a number of neurons equal to 

the number of different inputs of the network, see Figure 

2. The hidden (or central) layer's number of neurons was 

to be investigated. The output layer contains one neuron 

for the output. The transfer functions for the neurons of 

the central layer are the tangential sigmoid. Thus, we were 

able to use the DEM parameter combinations and their 

corresponding bulk values to train the ANNs. Especially, 

we divided the samples in three pools: the first, with 70% 

of the samples, as training set, the second, with 15% of 

the samples, as generalization set, for early stopping, and 

the third, as test set, as suggested by Haykin (2009). The 

assignment of each sample to each pool was random. We 

started with all the DEM parameter combinations and their 

corresponding numerical psh from the training set to 

create 36 ANNs that differed in their numbers of neurons 

in the hidden layer (between five to forty neurons). The 

generalization set was used to speed the training. We then 

determined the coefficient of determination (R2), between 

the bulk-macro behaviours in the output of the ANN and 

the test set simulations, which were not correlated with the 

remaining 70% used for the training. Thus, we could 

select for psh the ANN with the maximum R2, again as 

suggested by Vaferi, Samimi et al. (2014), and we noted 

its number of neurons. We then checked R2, root mean 

squared error, mean absolute error, mean squared error of 

this ANN against a Bayesian linear regression and a 

Gaussian nonlinear regression to estimate the validity of 

the regression. Both were trained with the same training 

set as the ANNs. The check was performed for each 

method by comparing the DEM bulk values of the test set 

against the bulk values predicted by each method from the 

corresponding DEM input values of the test set. 

We repeated the same ANN creation steps for sh, b and 

AoR, obtaining one trained ANN for each bulk value. 

Since psh, sh and b belonged to the shear-cell 

simulations, their ANNs were handled together: we had 

one cluster with three ANNs for the shear cell and one with 

only one ANN for the AoR. We could then proceed in 

identifying valid input parameters. Oberkampf and Roy 

(2010) suggested using a Design of Experiments (DoE) 

method to determine the parameter combinations to be 

simulated. They stated that this approach allows 

optimization of computation time with an acceptable loss 

of precision. The speed of the trained ANNs enabled us to 

follow a different approach to maximizing the precision of 

the characterization. We created random values in the 

range and numbers defined in Table 3 according to a 

standard uniform distribution. The total number of 

combinations of these random values was 6,250,000. 

These combinations were then fed to and processed by the 

selected ANNs and thus three bulk values for the shear cell 

and one for the AoR were obtained.  
 

Macroscopic Experiments and Parameter 

Identification 

The experimental characterization was performed as 

described in Benvenuti, Kloss et al. We obtained for each 

of the twelve load conditions of the SSC three bulk values 

(psh, sh and b). The fourth bulk value was the result of 

two angle of repose (AoR) tests that recreated the repose 

angle observed in a pile of the real material. Subsequently, 

we compared the ANN and experimental bulk behaviours 

for the twelve shear-cell load conditions. If in a DEM-

parameter combination all the three bulk values differed 

by less than 5% from those of the corresponding 

experiments, i.e.: 























%51

%51

%51

,exp

,

,exp

,

,exp

,

p

nump

sh

numsh

psh

numpsh

if

if

if

and

and













        (3) 

the combination was marked. The marked combinations 

were processed by the AoR ANN, and then compared with 

the experiment. We considered those valid those that 

differed by less than 5% also in this comparison: 

%51
exp


AoR

AoR
if num         (4) 
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Application 

The method previously explained allowed to collect data 

regarding the contact law. We took the average value for 

each of the DEM parameter and we used them in an 

industrial scale DEM simulation, with the same software, 

of an iron ore sintering process. Especially, we examined 

the behaviour of these particles in a sinter chute cooler. 

The particles moved from the top of a specifically 

designed chute and were collected by moving boxes at the 

bottom. These boxes were holed at the base, allowing cool 

air to lower the temperature of the sinter. It was critical to 

ascertain if the larger particles segregated, by moving to 

the bottom of the boxes, while the smaller to the top, 

allowing a more effective distribution of the cool air. The 

simulation was performed with a maximum of 500,000 

particles. 

RESULTS AND DISCUSSION 

DEM simulations 

For sinter fine, 546 shear cell and 81 static AoR 

simulations were run with the parameter combinations 

described in Table 2. The computational time amounted to 

1 hour with 32 AMD cores for a benchmark shear-cell 

simulation and to 9 hours for a benchmark AoR 

simulation, both with 50,000 particles. Simulations with 

larger dCylDp required more time (e.g., about 12 hours for 

the shear cell with 400,000 particles). 

ANN model development 

 Bayesian Gaussian ANN 

Coeff. of determination (R2) 0.860 0.843 0.959 

Root mean squared error 0.057 0.061 0.031 

Mean absolute error 0.042 0.038 0.025 

Mean squared error 0.003 0.004 0.001 

Table 4: Regression methods quantitative comparison. 

 

 

Figure 3: Regression line for the Bayesian linear 

prediction with the test samples. 

 

Figure 4: Regression line for the Gaussian nonlinear 

prediction with the test samples. 

 

Figure 5: Regression line for the ANN with the test 

samples. 

 

First, we determined the regressions of the bulk behaviour 

parameters, for instance the psh, with a Bayesian linear 

prediction (Figure 3) and a Gaussian nonlinear prediction 

(Figure 4). Later we obtained Figure 5, where the 

corresponding plot for the ANN with the maximum R2 is 

shown. Table 4 shows a quantitative comparison between 

the three methods. In fact, we achieved a R2 = 0.96 for an 

ANN with fifteen neurons. Increasing the number of 

neurons did not improve the R2; it even started to oscillate 

with higher numbers of neurons. We subsequently 

obtained the optimal number of neurons for all ANNs. 

Further, we processed the random combinations (Table 3) 

with the ANN. The ANN evaluation was significantly faster 

than the DEM simulations. The individuation of the 

numerical bulk behaviours for all the DEM combinations 

did not take more than a few seconds on a single core). 

Experiments and Parameter Identification 

Figure 6: Box Plot, SSC, n = 10,070 Pa, P. = 1. 

Figure 7: Density Plot, SSC, n = 10,070 Pa, P. = 1. 
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Figure 8: Box Plot, AoR. 
 

Experimental values identifying the bulk behavior, psh, 

sh and b, of sinter fine were acquired through SSC tests. 

The b has an average of 1,760 kg/m3 with a 42 kg/m3 

deviation. Two AoR tests were performed that gave an 

average angle of 38.85°. We obtained the radius (R) mean 

and standard deviations, as shown in Table Table 1, from 

sieving experiments. The comparison between numerical 

and experimental behaviours led to a first series of marked 

combinations (MC1) for one load condition of the shear 

cell (n =10,070 Pa, P=1.0), as plotted in Figure 6, with 

values normalized over the maximum values, shown in 

Table 5. Also the remaining box plots present normalized 

values. Both the p and the s, however, show a narrow 

confidence interval, which demonstrates their influence 

and the ability of this procedure to find valid DEM 

parameters. These results agree with our examination of 

the ratio of the standard deviation to the range, see Table 

5. Further, we observed that various DEM parameter 

combinations could reproduce the experimental behaviour, 

and thus evaluated their mutual dependencies. This is 

shown more clearly in a density plot (see Figure 7 for 

MC1) of the particles' coefficient of restitution (COR) in 

relation to the coefficients of sliding friction (s) and 

rolling friction (r); in the white area, no valid sets of 

simulation parameters can be found. In each cell the valid 

sets are grouped according to the 4 different COR ranges. 

Each cell is coloured according to the group with the most 

members. Multiple combinations (250,407 or 4% of the 

total) of s and r reproduced the experimental behaviour 

with varying COR. This underlines once more their 

correlation, as already stated by Wensrich and Katterfeld 

(2012). 

We then processed the random combinations with the AoR 

ANN. In Figure 8 the box plot for the same criteria as 

before can be seen. In accordance with theory (Wensrich, 

Katterfeld 2012), in a simulation dominated by rolling 

particles, the coefficient of rolling friction has the 

maximum influence.  

Finally, we extracted from the MC1 values the AoR ANN 

behaviour and compared it with the experimental one. As 

can be seen in the box plot in Figure 9, the confidence 

interval is very small, indicating that all the parameters but 

the COR played an important role, and demonstrating the 

reliability of these parameter combinations in representing 

the bulk behaviour. From the initial 6,250,000 

combinations, only 3,884 were valid (0.0621%), see Table 

5. 

 

Figure 9: Box Plot, SSC, n = 10,070 Pa, P. = 1. & AoR. 

 
 type SSC AoR SSC & 

AoR 

s mean 0.831 0.177 0.664 

(-) std. dev. (SD) 0.097 0.095 0.029 

 max 0.864 0.8643 0. 745 

 range (R) 0.9 0.9 0.9 

 SD / R 0.108 0.106 0.032 

r mean 0.692 0.830 0.916 

(-) std. dev. (SD) 0.215 0.193 0.042 

 max 0.981 0.830 0.989 

 range (R) 0.9 0.9 0.9 

 SD / R 0.239 0.214 0.046 

COR mean 0.708 0.590 0.590 

(-) std. dev. (SD) 0.104 0.073 0.065 

 max 0.989 0.989 0.820 

 range (R) 0.4 0.4 0.4 

 SD / R 0.259 0.183 0.161 

p mean 2245.7 3192.8 2283.9 

(kg/m3) std. dev. (SD) 80.5 277.4 67.1 

 max 3498.6 3498.6 2452.2 

 range (R) 1500 1500 1500 

 SD / R 0.054 0.185 0.045 

valid number 290203 816552 3884 

comb’ns  (%) 4.64 13.06 0.06 

Table 5: DEM valid values. 

Macroscopic application 

As explained in the Application section, we divided the 

first of the boxes filled by the chute in three layers with 

the same dimensions, from 6 on top to 8 on bottom, see 

Figure 10. The volume over these layers was not 

considered, because it was continuously supplied of 

particles from the chute. In Figure 11 the percentage of the 

total volume of the particles available in each layer at 

steady-state, grouped by radius, is shown. We could 

clearly see how the larger particles disposed mostly in the 

bottom layer, validating the realized design. 

 

Figure 10: DEM simulation layout. 
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Figure 11: DEM segregation of particles in the chute. 
 

CONCLUSION 

We have presented a two-step method for DEM simulation 

parameter identification. In the first step, an artificial 

neural network is trained using dedicated DEM 

simulations in order to predict bulk behaviours as function 

of a set of DEM simulation parameters. In the second step, 

this artificial neural network is then used to predict the 

bulk behaviour of a huge number of additional DEM 

parameter sets. The main findings of this study can be 

summarized as follows: 

 An artificial neural network can be trained by a 

limited number of dedicated DEM simulations. The 

trained artificial neural network is then able to predict 

granular bulk behaviour. 

 The correctness of the training can be established 

through standard statistical methods. 

 This prediction of granular bulk behaviour is much 

more efficient than computationally expensive DEM 

simulations.  Thus, the macroscopic output 

associated with a huge number of parameter sets can 

be studied. 

 If the predictions of the artificial neural network are 

compared to a bulk experiment,  valid sets of DEM 

simulation parameters can be readily deduced for a 

specific granular material. 

 This DEM parameter identification method can be 

applied to arbitrary bulk experiments. Combining two 

artificial neural networks which predict two different 

bulk behaviours leads to winnowing the set of valid 

DEM simulation parameters. 

 The parameters collected with this method can be 

trustworthy used for large scale simulations. 

As part of future work, we will develop this method 

further by considering different fractions of granular 

materials, which will lead to size-dependent sets of DEM 

simulation parameters. 
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