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ABSTRACT 

Smoothed Particle Hydrodynamics (SPH) is a numerical 

method that does not use a mesh or grid when solving a 

set of partial differential equations. This makes it 

particularly useful in application to solid mechanics 

problems where the sample undergoes large deformation. 

Whereas mesh-based methods have difficulty when the 

sample becomes severely distorted, SPH naturally deals 

with this important engineering scenario. We implement 

the SPH method for compressional deformation of solid 

samples and focus on uniaxial, biaxial and triaxial loading. 

We develop a numerical procedure that naturally deals 

with these three different sets of boundary conditions and 

apply it to both small and larger strains in elastic and more 

complex materials. 

NOMENCLATURE 

r position 

v  velocity 

m mass 

P pressure 

g body force 

S deviatoric stress tensor 

G shear modulus 

K bulk modulus 

c speed of sound 

 

 density 

 strain tensor 

 rotation tensor 

 (total) stress tensor 

VM von Mises stress 

 artificial viscous stress tensor 

 colour function 

 

Superscripts/subscripts 

i,j superscript indicating tensor components 

a,b subscripts indicating SPH particles

INTRODUCTION 

Compressional tests of solid materials are used extensively 

to determine mechanical properties and to characterize 

solid material behaviour. Three main types of 

compressional tests are usually implemented – uniaxial, 

biaxial and triaxial tests. The usual shape of the sample is 

a cylinder or a rectangular block (cuboid). In uniaxial tests 

this solid sample is placed between flat plates (platens). 

Grips may also be placed on the sample ends to prevent 

slippage on the platens. One end of the sample is pushed 

by a moving piston, at a uniform rate or by a given force, 

while the other end is fixed. Using suitable sensors (strain 

gauge or extensometers) mechanical properties of the 

sample can be determined for the test. Biaxial tests are 

carried out on cuboid samples. This test is set up similarly 

to a uniaxial test but with the additional condition that on 

a pair of opposite free faces a compressive normal stress is 

applied. Finally, a triaxial test can be performed on either 

cylinders or cuboids, but here a normal stress is placed on 

all remaining free surfaces. Usually this can be done by 

immersing the sample in a fluid (such as oil) at high 

pressure. 

 

Numerical modelling of these compressional tests have 

been reported on (for various numerical methods). 

However our main emphasis in this paper is to model 

these tests to high strain in the sample. This means the 

sample may deform in shape. Traditional numerical 

techniques such as finite element or finite volume methods 

implement a mesh to cover the volume domain of the 

material. When the sample deforms significantly these 

mesh methods can become inaccurate. Alternatively re-

meshing the constantly deforming irregular domain can be 

problematic with high cost and numerical diffusion.  

 

A computational method which does not use a mesh 

would be ideal for this problem. Smoothed Particle 

Hydrodynamics (SPH) is a meshless computational 

method which can be used for solving sets of partial 

differential equations. It was originally proposed by 

Gingold and Monaghan (1977) and independently by 

Lucy (1977) for application to astrophysical problems. It 

has since been applied extensively for solving the Navier-

Stokes equations in a diverse range of applications (Cleary 

et al, 2002, Pereira et al, 2012, Tartakovsky et al 2015, 

Kajtar & Monaghan, 2012). For a comprehensive review 

of these applications see Monaghan (2012). More recently 

it has begun to be applied to solid mechanical problems 

(Libersky and Petschek, 1990, Gray et al, 2001, Bui et al, 

2008 and Lemaile et al, 2014). Very recently Das and 

Cleary (2015) applied the SPH method to model uniaxial 

compression of solid samples for infinitesimal 

deformation. Their main aim was to compare the stability, 

convergence and accuracy of SPH to finite element 

solutions for the stress wave propagation through the 

sample. They found that the SPH method was well suited 

to accurately model elastic solids that are subject to 

uniaxial compression.  

 

The mesh-free nature of SPH means that it can be used for 

problems with very large strains – well above those where 

grid or mesh based methods fail due to mesh distortion 
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and avoids any requirements of adaptive re-meshing and 

the associated numerical diffusion from the grid to grid 

interpolation. Specifically SPH is attractive for modelling 

of large strain deformation of continuous rock masses and 

so may be applied to geological and geomechanical 

problems.  

 

As mentioned above the only previously published work 

on applications of SPH to solid compressional tests has 

been to infinitesimal deformation of uniaxial tests (Das 

and Cleary, 2015). In this paper, we are therefore 

motivated to apply the SPH method to much larger 

deformation of the sample. In addition, we would like to 

encompass a larger range of common mechanical tests. 

These are the biaxial and triaxial tests. In both these cases 

a normal stress is placed on the sides of the sample. In the 

biaxial test, as described above, an opposite pair of 

parallel sides are subject to a normal stress leaving the 

sample to deform freely in the remaining direction. This is 

therefore a fully three-dimensional problem. In the triaxial 

test, normal stresses are placed on all remaining sides (of 

the cylinder or cuboid). As the sample deforms, one must 

also track the deforming sides, so as to apply the normal 

stress. 

 

In the following we describe the SPH method for solids 

and focus on application of the boundary conditions for 

the various mechanical tests. We then apply these new 

boundary conditions to uniaxial, biaxial and triaxial 

compressions and consider large deformation of the 

samples. 

SMOOTHED PARTICLE HYDRODYNAMICS 

APPLIED TO SOLID MATERIALS 

The application of SPH to the modelling of solid elastic 

materials is well established. Here we give a brief 

overview of the method and then focus on the new 

treatment of biaxial and triaxial boundary conditions. 

 

The SPH continuity equation, taken from Monaghan 

(1992), is: 

  )1( 
b

abbab
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d
vv
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where mb is the mass of particle b, a is the density of 

particle a with velocity va. Here W(r,h) is a C2 spline 

based interpolation or smoothing kernel with radius 2h 

that approximates the shape of a Gaussian function. We 

denote the position vector from particle b to particle a by 

baab rrr   and let  hWW abab ,r  be the 

interpolation kernel with smoothing length h evaluated at 

distance abr . This form of the continuity equation is 

Galilean invariant (since the positions and velocities 

appear only as differences), has good numerical 

conservation properties and is not affected by free surfaces 

or density discontinuities.  

The momentum equation used for predicting elastic 

deformation of solids is: 
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where v is the velocity, g is a body force such as gravity 

and is the stress tensor which is written as  = -PI + S. 

Here P is the isotropic pressure and S is the deviatoric 

stress, while I is the identity tensor. Assuming Hooke’s 

Law with shear modulus G, the evolution equation for the 

deviatoric stress S is calculated using the Jaumann rate 

equation (Gray et al, 2001)  
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where the components of the rate of strain tensor are 

given by 
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and the rotation tensor  that accounts for the large 

rotational effect is given by  
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The SPH discretisation of the momentum equations (2) 

and (3) is  
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Here a and b are the stress tensors of particles a and b, 

and ab is an artificial viscous stress term that produces 

shear and bulk viscosities. For particle a, the SPH 

equations for the components of the strain rate 
a and the 

rotation tensor a are:  
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The artificial viscous stress in (6) enhances solution 

stability. For elastic solids, the form of this term 

(Monaghan and Gingold, 1983) is 
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Here is the coefficient of the linear term which produces 

a shear and bulk viscosity and  is the coefficient of the 

quadratic term which is approximately equal to the Von 

Newmann-Richmyer viscosity. We use the traditional 

value of and 



We use an equation of state where the elastic pressure is 

proportional to the change in density 

P=c2(whereis the reference density,is the 

current density and c is the speed of sound in the solid 

material. The sound speed is calculated from the material 

bulk modulus, K, i.e. 
0/ Kc  , which is the real speed 

of sound in the material. An improved Euler explicit 
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integration scheme is used with a time step t determined 

by the Courant condition }./5.0min{ as cht   

Boundary Conditions 

Uniaxial boundary conditions 

 

The boundary conditions for uniaxial compression are 

prescribed velocities on the top and bottom platens. If we 

orient the sample so that the compressional direction is 

parallel to the z-axis, then this implies on the first and last 

set of SPH particles (in the z-direction) we impose given 

z-direction speeds. In fact we use a layer of four particles 

for each platen, so as to avoid issues of incorrect 

normalisation near the boundary of the dynamic SPH 

particles.  In uniaxial compression, the side boundaries (in 

x and y directions) are free to deform according to the 

equation of motion.  Because the SPH formulation 

naturally deals with this, nothing additional has to be 

applied to these side boundary SPH particles.  

Biaxial boundary conditions 

In biaxial compression one only uses cuboid samples. This 

means all faces of the cuboid are planar and parallel to one 

of the principal axes. The faces perpendicular to the z-axis 

(compression direction) are treated similarly to the 

uniaxial case, above. A pair of parallel opposite faces (in 

this case the faces perpendicular to the x-axis) has a 

normal stress applied to them, while the remaining two 

faces (perpendicular to the y-axis) are free to deform (as in 

the uniaxial case. To apply the normal stress boundary 

condition to a planar surface we use rigid mesh objects. 

Each small portion of the mesh imparts a normal force to 

the SPH particles that are adjacent to it.    

Triaxial boundary conditions 

Triaxial compression tests are usually carried out with the 

solid sample being placed in a high pressure fluid. The top 

and bottom platens are still given prescribed speeds (as in 

the uniaxial and biaxial cases) but the sides surfaces 

(whether they be planar, curved or more irregular) have a 

normal stress applied. So in this case we need to identify 

the (side) surface boundary particles and a normal force 

must be applied to them. To do this we need to not only 

determine which particles are the surface particles but also 

determine the normal vector to these particles (noting that 

this can change with large amplitude deformations of the 

sample).  

 

This is essentially a surface identification problem and 

similar to the identification of a surface between two 

immiscible fluids for fluid flow problems. We first define 

the volume corresponding to the dynamic SPH particle 

domain, given by: 
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where m is the SPH particle (material) domain. The 

normal to a surface can be calculated in SPH as follows. 

Given the function which represents a surface in three-

dimensions x,y,z), the normal to the surface is easily 

calculated from its gradient  . In SPH, numerical 

values of functions and their derivatives are calculated 

through an interpolation function. For example, the 

interpolation of any function  at any position r using 

SPH smoothing is given by:  
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The gradient of the function  is given by differentiating 

the interpolation equation (12) to give: 
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The problem with using equation (13) for calculating 

gradients is that it produces noisy estimates. A numerically 

better (less noisy) estimate of the gradient is the symmetric 

expression 
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The important point to note here is that interior particles, 

when suitably averaged, will yield comparatively small 

(magnitude) normals. On the other hand surface particles 

will have a sizeable (non-zero) normal. A criterion is 

therefore implemented to ignore particles with normal 

magnitudes below a certain threshold. The unit normal, n 

to the surface is calculated from equation (14), for those 

particles satisfying the threshold criterion, after being 

suitably normalised. 

To model the triaxial boundary conditions, for all surface 

particles (those identified as having a non-negligible 

normal) we add an additional normal force, F: 

)(, 15P 2

triaxial
nF 

     

where Ptriaxial is the fluid pressure, is the SPH particle 

separation and the negative sign indicates the force is into 

the sample. 

In our results we display the von Mises stress field during 

compression. The von Mises yield criterion is commonly 

used in engineering applications to assess the failure 

strength of a material. The von Mises stress, VM, is given 

by  
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Here andare the three principal stresses. 

RESULTS 

Previous SPH modelling of uniaxial and triaxial 

compression tests were reported by Das and Cleary (2015, 

2008). Initially, we validate against those results by 

comparing the early time stress wave propagation for the 

two cases in three-dimensional cuboid samples. Figure 1 

shows the stress wave propagation for uniaxial and triaxial 

compression taken at 0.36 ms. Material properties of the 

sample are bulk modulus of 7.47 GPa, shear modulus of 

2.67 GPa and density of 2300kg/m3 to give a sound speed 

of 1802 m/s. The cuboid sample has dimensions 8.6 cm x 
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8.6 cm x 14 cm and we use an SPH particle spacing of 3 

mm with a total of around 40,000 SPH particles. The 

upper piston surface moves down at 1.5 mm/s. The 

uniaxial compression stress wave travels downwards 

before reflecting off the bottom surface. The triaxial 

compression test imposes a uniform normal pressure of 70 

MPa on the sides of the cuboid. In this case the stress 

waves are initiated from not only the top but also the four 

sides. These waves collide near the centre of the sample 

generating a more complex stress pattern. Due to the 

pressure from the sides, the magnitude of the von Mises 

stress is significantly larger in the triaxial case (by a factor 

of approximately three) compared to the uniaxial case. The 

early stage evolution of the stress wave pattern thus agrees 

generally with previous studies (Das & Cleary, 2008, 

2015).  

 

 

 

Figure 1: Stress wave during uniaxial (above) and triaxial 

(below) compression for cuboid samples. Colour bar has 

units of Pa. See text for material properties and other 

quantities used in simulation. 

Biaxial test 

SPH simulations of three-dimensional biaxial tests have 

not been reported on before.  So now we consider this case 

with the same material properties and sample size (as 

above) but with a normal pressure of 70 MPa only on the 

side walls perpendicular to the x-axis. Figure 2 shows the 

early stage stress wave pattern. One can see the lateral 

pressure generates the main stress in the sample at this 

early stage. High stress regions are close to the two side 

walls. As time progresses the waves travel inwards and 

interfere near the sample centre. In the third (free 

direction) there is no significant stress variation at this 

stage but over time the strain is allowed to relax in this 

direction which is an important aspect of the biaxial test. 

Curved boundaries 

The previous SPH compression studies dealt with cuboid 

samples. We now consider samples with curved side 

boundaries, which are a main focus of this paper. 

 

We consider a cylindrical sample, with otherwise similar 

conditions to those outlined for the cuboid sample of Fig. 

1 except we used a uniform normal pressure of 20 MPa for 

the triaxial test. Larger normal pressures tend to cause 

rotation of the sample between the platens, most probably 

caused by slippage between the sample and platens. Figure 

3 shows the stress wave profiles for the two cases. In the 

uniaxial case stress waves are created from the top (as 

before) and travel down the sample before reflecting. In 

contrast to the cuboid case, because the sample does not 

have the long edges, the stress wave pattern does not have 

the typical V-shape but is planar. In contrast, because of 

the uniform normal pressure, the triaxial compression 

(Fig. 3b) stress wave pattern displays axial high and low 

stress regions. These axial bands appear almost 

immediately and persist to steady state. Once again, as in 

the cuboid case, the magnitude of the von Mises stress is 

much larger in the triaxial test than the uniaxial test (by 

roughly a factor of three).  

 

 

 

Figure 2: Stress wave pattern for a biaxial compression 

test. View from above the platen (above) and side-on 

(below). Colour bar has units of Pa. 

We now consider a curved shape for the sample (a 

cylinder) and extend the tests to much larger times, so as 

to study large deformation of the sample. This situation is 

of significance in engineering applications. For this case 

we use a density and moduli approximating rubber, i.e. 

density of 1000 kg/m3, bulk modulus of 1 GPa and shear 

modulus of 0.6 MPa. The result of this compression at 

about 3% strain is shown in Fig. 4. The uniaxial 

compression shows mainly lateral stress variations while 

the triaxial compression shows both lateral and axial 

variation which are generated from the lateral pressures. 

The uniaxial simulation was run to 5 seconds and showed 

an observable sample deformation. It tended to bulge near 

the centre of the sample (equidistant from each platen). 
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However, larger deformation in the triaxial simulation was 

limited by lateral movement of the sample between the 

platens after about 2 seconds, caused by slippage between 

sample and platens. Limiting this slippage will be 

addressed in future work. 

More complex constitutive models 

The elastic model presented in equations (3) and (4) has a 

limited range of applicability. Many materials show much 

more complex rheological and deformation behaviour, 

particularly involving different amounts and types of 

plasticity. As a consequence the shape of the sample may 

vary in a more complex manner. It is useful to also 

determine how this SPH method deals with these more 

complex models in different compressive loading 

conditions. 

 

For this test we attempt to model a rock sample which has 

an elasto-plastic response, with a softer material in the 

middle of the sample and harder material near the platens. 

We use a Drucker-Prager model (Bui et al, 2008, Lemaile 

et al, 2014) with the application of this model to direct 

shear tests being recently reported in Cleary et al (2015).  

The materials both have density 2380 kg/m3. The harder 

material has a bulk modulus 20 GPa and shear modulus 

0.23 GPa. The softer material has bulk modulus 10 GPa 

and shear modulus 0.2 GPa. To model the solid materials 

the Drucker-Prager model is implemented with plain strain 

conditions and the following values for the parameters 

yield stress/cohesion, friction angle and dilatancy angle: 

20 MPa, 24.7 and 10.0 for the harder material and 8 MPa, 

46.1 and 10.0 for the softer material. 

 

 

Figure 3: Stress wave pattern for a uniaxial (above) and 

triaxial (below) compression on a cylindrical sample. 

Colour bar has units of Pa. 

Figure 5 shows samples at 30% strain for both uniaxial 

and triaxial compression with a normal pressure of 

40MPa. Firstly the uniaxial sample develops a curved 

boundary in the axial direction with a bulge in the sample 

around the middle plane. The sample diameter increases 

(from platens to the midpoint) by a factor of 1.4 while the 

overall shape of the sample remains comparatively 

symmetric. The maximum von Mises stress is around 45 

MPa, near where the platens and sample meet. On the 

other hand, triaxial compression does not show any 

significant bowing (curvature) in the axial direction. The 

cylindrical boundaries remain quite straight with the 

sample expanding uniformly in the radial direction at all 

heights. By volume conservation the radius has now 

increased by a factor of 1.19 from its initial value. So the 

applied normal pressure appears to have prevented sample 

bulging, as one may expect intuitively. The maximum von 

Mises stress in the sample, for the triaxial case, is about 

double the uniaxial case at 80 MPa and this appears to be 

quite uniform throughout the sample. It should be noted 

that beyond this point, the sample began to slide sideways 

between the platens, due to the high stresses it was 

experiencing and the absence of platen friction in the 

model.  

 

 

 

Figure 4: Von Mises stress for a rubber sample at around 

3% strain for uniaxial compression (above) and triaxial 

compression (below). Colour bar has units of Pa. 

CONCLUSION 

In this paper we have introduced a method to model 

confined boundary conditions when solid samples undergo 

compression. In principle, this method will also work for 
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samples under tension. The three situations we have 

focussed on are uniaxial, biaxial and triaxial compression. 

Biaxial compression is a special case which only deals 

with cuboid samples but the other two cases can deal with 

any regular shaped sample (such as cuboids, cylinders 

etc). The case of uniaxial compression is naturally dealt 

with in the SPH methodology as SPH particles can move 

(and hence the sample deform) in response to a given 

force. This is an appealing feature of SPH as can be 

clearly see in Fig. 5. 

 

 

 

Figure 5: Von Mises stress and sample deformation for 

uniaxial (above) and triaxial (below) compression on an 

initial cylindrical sample with a Drucker-Prager model. 

Both cases are shown at 30% strain. Colour bar has units 

of Pa. 

Biaxial boundary conditions have been tried and tested at 

relatively low strain. The stress wave pattern shows 

qualitatively correct behaviour, but future work will 

consider this at a quantitative level. Triaxial boundary 

conditions have been applied on cuboid samples as well as 

cylindrical samples. Once again they appeared to give 

qualitatively correct behaviour. Comparison with theory is 

difficult here as there are no available analytical models 

and comparison with other numerical models is 

problematic at high strain. However we can say whenever 

a lateral pressure is applied to a sample the overall von 

Mises stress in the sample increases.  Full stress-strain 

curves (to compare with experiments) will be given in a 

future publication. 

 

There are some numerical problems which need 

consideration. Our biaxial simulations at high strain have 

issues which we are presently working on. Some triaxial 

simulations show both rotation and sideways movement of 

the sample between the platens. These effects are related 

to slipping of the sample between platens. In reality, 

friction is present which prevents the sample slipping on 

the platens. This is presently being considered in our 

modelling and will be reported on in the near future. 
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