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ABSTRACT 

Coupling between Discrete Element Modelling (DEM) 

and Computational Fluid Dynamics (CFD) packages is a 

promising approach to model granular-fluid systems, 

enlarging the range of particle-fluid processes that can be 

managed with numerical simulation.  
 

In this paper, coupling approach for the commercial 

software packages Rocky® (DEM) and ANSYS Fluent® 

(CFD) will be addressed. Rocky® is a powerful DEM 

software that can handle true non-round particle shapes, 

breakage, physical wear and is efficient on both CPU and 

GPU systems, among other capabilities. ANSYS Fluent® 

package is well known as one of the world leaders for 

CFD applications.  
 

Mathematical modelling for DEM, CFD and the coupling 

itself will be described, as well as two case studies. The 

first one is a one-way coupling case, meaning that only the 

fluid flow affects the particle movement. This example 

demonstrates the method capability of considering the 

effect of drag force on the particles. Also, the importance 

of choosing a suitable drag law for the case is made clear. 

The second study considers a dense flow, and therefore 

two-way coupling, in which both phases have an influence 

in each other, is demonstrated. Comparison with 

experimental data proves the capability of the fluid also 

being influenced by a reactive force. 

NOMENCLATURE 

CD drag coefficient 

dp  particle equivalent diameter 

d’p diameter of a sphere which has its projected area 

(in the direction of the flow) equal to the actual 

particle projected area  

dsn
  change in normal contact overlap during time 

step 

dst
  tangential particle displacement during time step 

D pipe diameter 

Ep particle material loading stiffness 

Eb boundary material loading stiffness 

FD drag force 

Fp
C  contact forces on the particle 

Fp,n
C normal elastic-plastic contact force on the 

particle 

Fp,n
C,t normal elastic-plastic contact force on the 

particle at current time step 

Fp,n
C,t-dt normal elastic-plastic contact force on the 

particle at previous time step 

Fp,t
C tangential contact force on the particle 

Fp,t
C,t tangential contact force on the particle at current 

time step 

Fp,t
C,t-dt tangential contact force on the particle at 

previous time step 

Fp
fp  fluid-particle interaction forces on the particle 

Ff
pf  fluid-particle interaction forces on the fluid 

Fp  pressure gradient force 

g  gravitational acceleration 

Ip  particle moment of inertia tensor 

K1  Stokes form factor 

K2  Newton form factor 

Knl  contact stiffness for loading parts 

Knbl  boundary loading stiffness 

Knpl  particle loading stiffness 

Knu  contact stiffness for unloading parts 

Lp  particle size 

mp  particle mass 

p pressure 

Re relative Reynolds number 

sn
t  normal overlap at current time step 

sn
t-dt  normal overlap at previous time step 

t  time 

Tp  torque on the particle 

u  fluid velocity 

v  translational particle velocity 

Vcell  cell volume 

Vp  particle volume 

 

αf  fluid volume fraction 

ε  coefficient of restitution 

μd  dynamic friction coefficient 

μf  fluid viscosity 

μs  static friction coefficient 

ρf  fluid density 

τf  viscous stress tensor 

ϕ  particle sphericity 

Ψ  blending function 

ωp  particle angular velocity 

INTRODUCTION 

Discrete Element Method (DEM) is a numerical technique 

that deals with granular flows, which consist of a large 

number of solid particles (such as sand, ore, grain, among 

others). Derivation of continuous equations of state and 

motion for this type of media is complicated and, thus, 

DEM aims to solve these problems by the simulation of 

the evolution of every particle in the system subject to 

contact forces. Instead of numerical integration of the 

continuum equations of motion and state, the motion of 

each particle is simulated, as well as the interaction for 

each particle-particle and particle-boundary pair. 
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Computational Fluid Dynamics (CFD) predicts fluid flow, 

heat and mass transfer by solving equations of 

conservation of mass, momentum, energy and species. 

Other related phenomena, such as chemical reactions and 

combustion, can be accounted for if necessary. 
 

The coupled DEM-CFD approach is a promising 

alternative for modelling granular-fluid systems. Being 

able to deal with flows with high solids concentrations, 

this coupling enlarges the range of particle-fluid processes 

that can be managed with numerical simulations. Complex 

phenomena such as pneumatic conveying, granular drying, 

slurry flow inside grinding mills or even chemical 

reactions between particles and fluids can be handled with 

these powerful tools.  
 

Introduced by early developers such as Hoomans et al. 

(1996), Tsuji et al. (1993) and Xu and Yu (1997), DEM-

CFD coupling models the motion of particles as a discrete 

phase, whereas the fluid flow is treated as a continuous 

phase described by the local volume averaged Navier-

Stokes equations (VANS) on a computational cell scale 

(Drew, 1983). This approach has been recognized as an 

effective method to study the fundamentals of particle–

fluid flow by various investigators (Zhu et al., 2008). 
 

There are two ways to couple DEM and CFD 

technologies: one-way coupling, in which only the fluid 

flow affects the particle movement, and two-way coupling, 

in which the particle flow also influences the continuous 

phase behaviour.  
 

In this paper, coupling between DEM package Rocky® 

and CFD package ANSYS Fluent® will be demonstrated. 

Rocky® is a DEM software capable of performing 3D 

simulations of granular flows. It uses real particle 

geometries and analyses aspects such as 3D surface wear 

modification, particle breakage, sticky particles, as well as 

rotating and vibrating boundaries. ANSYS Fluent® 

package is a well established software for CFD 

applications. 

 

Both DEM and CFD techniques can present high 

computational costs depending on the system being 

simulated. However, one can overcome this by using 

adequate computational equipment. Rocky® can run in 

parallel, both under a CPU or a GPU cluster system. 

ANSYS Fluent®, in its turn, has a well documented HPC 

CPU capability. These capabilities are useful when dealing 

with problems of increasing complexity. 

MODEL DESCRIPTION 

This section will provide a brief description of DEM, CFD 

and coupling methods. 
 

DEM MODELLING 

Granular material flows can behave similar to solids or 

fluids. This behaviour leads to substantial difficulties for 

modelling this kind of flows using continuous equations of 

state and motion.  

 

Considering this, DEM is an important alternative for 

handling these flows numerically, since it is a technique 

that simulates the motion of every particle in a granular 

matter.  
 

All particles within the computational domain are tracked 

in a Lagrangian way, explicitly solving Newton’s second 

law that governs translational (equation 1) and rotational 

(equation 2) particle motion. For further information see 

Guo and Curtis (2014). 
 

fp
pFgF

v
 pmC

p
dt

pd
pm  

(1) 

p
dt

pd
p T

ω
I   (2) 

 

It is clear from the equations above that forces acting on 

each particle must be calculated. Generally, these forces 

can be divided into two categories: contact forces (for 

every particle-particle and particle-boundary interaction) 

and other forces, such as body forces or fluid forces (if 

fluid is considered in the simulation). 
 

In general, contact forces can be decomposed into two 

orthogonal components, consisting of forces normal and 

tangential to the contact plane, as can be seen in equation 

3: 
 

C

tp

C

np

C

p ,, FFF   (3) 

 

In a DEM code, particles are usually not deformable, but 

are allowed to slightly overlap, as illustrated by figure 1. 

Normal and tangential directions are defined as a function 

of normal overlap and tangential relative particle 

displacement as seen in the models described in the 

following sections. 
 

 
Figure 1: Particle contact forces considering overlapping 

particles. 
 

Models for these forces implemented in Rocky® are 

presented in the following sections. 
 

Normal contact forces 

Linear hysteresis is an elastic-plastic model that allows the 

simulation of plastic energy dissipation on a contact with 

the advantage of not incurring in large simulation times. 

Other advantages are that contact energy dissipation is not 

sensitive to other contacts, force is zero at zero contact 

deformation as expected, energy dissipation does not 

depend on loading rate and the coefficient of restitution is 

velocity independent. On the other hand, contact force and 

overlap history has to be retained, which makes it more 

difficult to implement. 
 

In this model, the shape of overlap-normal force is 

approximated by two straight lines of different slopes, one 

for loading and other for unloading, as illustrated on 

figure 2 for a collision of a 100 mm particle on a flat plate. 

This normal force is calculated in Rocky® by equations 4 

to 6 (Walton, 1993).  
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Figure 2: Normal force as obtained in a Rocky® 

simulation of a collision of 100 mm particle on a flat plate. 

 

  0 if,min ,

,

,

,  

nnnlnnu

dttC

np

tC

np dssKdsKFF  (4) 

  0 if001.0,max ,

,

,

,  

nnnlnnu

dttC

np

tC

np dssKdsKFF  (5) 
dtt

n

t

nn ssds   (6) 

 

In these equations, Knl and Knu are values of the contact 

stiffness for loading and unloading parts. The particle 

loading stiffness, Knpl, is calculated as: 
 

ppnpl LEK   (7) 
 

For the contact of particle and boundary, the equation is 

similar. However, instead of particle material loading 

stiffness, Ep, boundary material loading stiffness, Eb, is 

used. Boundary loading stiffness, Knbl, is thus calculated 

as: 
 

pbnbl LEK   (8) 

 

Therefore, for the contact of two particles, loading 

stiffnesses are defined as: 
 

2,1,

2,1,

nplnpl

nplnpl
nl

KK

KK
K




  (9) 

2

nl
nu

K
K   (10) 

 

In equation 9, 1 and 2 refer to different particles. In case 

of particles against boundary contact, the equations for 

loading and unloading stiffness become: 
 

nblnpl

nblnpl
nl

KK

KK
K




  (11) 

2

nl
nu

K
K   (12) 

 

This model is appropriate for flow of non-adhesive 

materials. For cases involving adhesive materials, other 

models implemented in Rocky® are more suitable. 

However, those will not be discussed in this paper. 
 

Tangential contact forces 

Linear elastic-frictional model is used. This model has 

simple elastic behaviour before onset of friction and can 

reproduce Coulomb frictional contact behaviour for static 

and dynamic frictional values. However, contact force and 

displacement history has to be retained, which makes this 

model more difficult to implement. 
 

If no sliding is taking place for the contact, the equation 

below is considered for tangential force: 
 

 tC

nstnl

dttC

tp

tC

tp dsK ,,

,

,

, ,min FFF    (13) 
 

If sliding is taking place for the contact, then the equation 

below is used: 
 

 tC

ndtnl

dttC

tp

tC

tp dsK ,,

,

,

, ,min FFF    (14) 
 

It is considered that sliding takes place on the contact 

when tangential force exceeds the limit of μsFn
C,t. Once 

tangential force falls below the value of μdFn
C,t, the 

contact is considered non-sliding again. 
 

CFD MODELLING 

A large number of researchers carried out studies to 

achieve basic understanding of the complex flows 

involving multiphase systems during past years. Basic 

equations are usually formulated using volume or 

ensemble methods (Vasquez and Ivanov, 2000). 

Derivation of basic multiphase flow equations and 

different averaging methods can be found in Ishii (1975), 

Drew (1983), Soo (1990) and Gidaspow (1993).  
 

In this work, the classical Navier-Stokes equations are 

modified and averaged in volume (Drew, 1983), returning 

the same expressions obtained with the two-fluid model 

equations unless only one phase is considered. This 

enables the usage of ANSYS Fluent® solver in this 

coupling implementation with Rocky®.  
 

The averaged mass and momentum conservation equations 

are written as: 
 

    0



uffff

t
  (15) 

   
pf
ff F-gτ

uuu

fff

ffffff p
t












 (16) 

 

To solve this set of equations, ANSYS Fluent® is used. 

ANSYS Fluent® is a finite volume, cell-centred code 

which uses an implicit scheme for time stepping. A block 

algebraic multigrid solver is used for the solution of the 

linearized equations (Hutchinson and Raithby, 1986). The 

PC-SIMPLE algorithm, which is the SIMPLE algorithm 

extended to multiphase flows, is used for the pressure-

velocity coupling. More detailed information about this 

coupling segregated pressure-based method can be found 

in Vasquez and Ivanov, 2000. 
 

A source term is included on the disperse phase continuity 

equation to impose the disperse volume fraction calculated 

at the DEM side. The secondary phase momentum 

equations are not solved by ANSYS Fluent®, as the 

dispersed phase velocity comes from the DEM solver.  

The momentum exchange term is not calculated in the 

CFD solver, but in DEM side, as explained in the next 

section, and included in the formulation through a source 

term in the continuous phase momentum equation. 
 

DEM-CFD COUPLING MODELLING 

The influence of the fluid flow on the particle motion is 

achieved by the Fp
fp term in equation 1. This term sums up 

all the fluid forces acting on the particle, such as drag and 

pressure forces, as well as non-drag forces like virtual 

mass force, Basset force, lift force, Saffman and Magnum 

forces (due to particle rotation), Van der Waals force, 

cohesive forces, among others. Depending on the flow 

conditions, most of these forces can be neglected. In this 
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study, only drag and pressure gradient forces are 

considered. 
 

Pressure gradient force is given by: 
 

ppV
P




F  (17) 
 

Drag force is calculated as: 
 

 vuF  D  (18) 
 

Drag force exerted on a single particle is different from 

drag force on a particle surrounded by others. Therefore, β 

is a coefficient that depends on the volume fraction of the 

cell where the drag is computed as well as the drag 

coefficient, as can be seen in the following equation. 
 

 
uv 




p

Dff

d

C


1

4

3  (19) 

 

In this coupling, various drag correlations are available 

based on particle type (spherical or non-spherical) and 

particle concentration (dilute flows or dense flows). Here, 

three of them, which are used in the examples in the next 

sections, will be discussed. 
 

The first of them is Schiller and Naumann correlation, 

which is well suited for spherical particles and dilute 

flows. For more details see Crowe et al. (2012). The 

modified correlation, which increases the valid range of 

relative Reynolds number so that inertial drag range is also 

covered (Re >1000), is considered: 
 
















  44.0,687.0Re15.01
Re

24
maxDC  (20) 

 

Relative particle Reynolds number is defined as: 
 

F

PF d



 uv 
Re  (21) 

 

Ganser (1993) correlation is suited for spherical and non-

spherical particles and dilute flows. It relates the drag over 

a particle with the Stokes form factor, K1, the Newton 

form factor, K2, and the particle relative Reynolds number, 

Re. Ganser correlation, as well as the form factors, appear 

below: 
 

 

21Re

3305
1

4305.06567.0
21Re1118.01

21Re

24

2
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KKK
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


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


   

(22) 
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


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














   (23) 

  5743.0
10log8148.1

102


K  (24) 

 

Stokes factor is a function of d’p, which represents the 

diameter of a sphere which has its projected area (in the 

direction of the flow) equal to the actual particle projected 

area (also in the direction of the flow).  It is also important 

to notice that D is the diameter of the pipe where the flow 

occurs. Ganser correlation is valid for ReK1K2 ≤ 105. 
 

For a relatively low particle concentration (αp < 0.2), Wen 

and Yu developed a drag law correlation based on a series 

of experiments on fluidized beds (for more information 

see Gidaspow, 1993). This correlation is presented in 

terms of a correction (based on fluid volume fraction) of 

the Schiller and Naumann correlation, using a superficial 

velocity relative particle Reynolds number. For higher 

solids volume fractions, Wen and Yu drag law deviates 

from the experimental data. For these cases, with solids 

volume fraction from αp ≥ 0.2 up to maximum packing 

limit, Ergun (1952) has developed a correlation to the 

head loss in fixed beds.  
 

To make the transition between the Wen and Yu and 

Ergun correlations in a smooth way, Huilin and 

Guidaspow (2003) have applied a blending function to 

promote a link based on fluid volume fraction. The final 

drag correlation obtained is given by the following set of 

equations: 
 

  YWDCErgunDCGHDC &,1,&,    (25) 
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(27) 

 

Ψ is a blending function defined as: 
 

  
5.0

8.075.1150arctan










f
              (28) 

       

The influence of the particles on the fluid flow is taken 

into account not only through the volume fraction in the 

VANS equations, but also through the force Fp
fp in 

equation 16. A semi-implicit treatment of the reactive 

force is adopted and the momentum exchange with the 

particulate phase is calculated as: 
 

cellV

N

p

fp
p

pf
f





1

F

F               
(29) 

WINDSHIFTER SIMULATION 

A windshifter is a device typically used in industrial waste 

processes to separate light from heavy particles. It 

basically consists of a vertical shaft in which air stream 

flows upwards. Particles are dropped into the shaft and, 

depending on their sizes, shapes and densities, they rise or 

settle down. 
 

The aim of this simulation was to compare the results 

when considering different drag laws. Since this case 

involves low discrete phase concentrations, one-way 

coupling was applied, which means that only fluid flow 

influences particle motion, and Schiller and Naumann and 

Ganser drag laws were compared. 
 

In this example, Rocky®’s capabilities of modelling both 

spherical and non-spherical particles is used. The figure 

below shows the different geometries that are considered: 

 

 
Figure 3: Geometries for paper (flat), stone (sphere), 

metal (rod) and wood (briquette), respectively. 
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An air inlet velocity of 20m/s was considered. The table 

below shows the information of the particles: 
 

Material Shape Sieve size 

(mm) 

Density 

(kg/m3) 

Mass flow 

rate (kg/h) 

Volume flow 

rate (m3/h) 

Paper Flat 20, 50, 80 800 1000 1,25 

Stone Sphere 20, 50, 80 3000 3750 1,25 

Metal Rod 20, 50, 80 8000 10000 1,25 

Wood Briquette 50 900 1125 1,25 

Table 1: Particle information. 
 

Following the workflow of a one-way coupling 

simulation, firstly, an ANSYS Fluent® analysis was 

carried out. A converged steady-state result for ANSYS 

Fluent® simulation is shown below. This simulation 

simply consists of air flowing through the shaft: 

 

  
Figure 4: Velocity plot (left) and velocity vectors (right) 

for air flow through the shaft. 
 

ANSYS Fluent® results were then exported to Rocky®. 

Figure 5 shows the results from DEM simulation in 

Rocky®, and the different behaviours that were obtained 

with different drag laws. 
 

Schiller and Naumann drag law does not take into account 

non-sphericity of the particles, which leads to terminal 

velocity prediction higher than Ganser correlation. The 

Table 2 exemplifies terminal velocity calculation for paper 

(value of 0.434 for sphericity). It also indicates if the 

particle will rise or fall. 

 

 
Figure 5: Schiller and Naumann and Ganser cases results. 

Different colours show different materials. 

 
Equivalent diameter 

(mm) 

Terminal velocity (m/s) 

 Schiller & 

Naumann 
Ganser 

2.0 19.69 7.71 

5.0 31.13 12.31 

8.0 39.38 15.66 

Table 2: Terminal velocity calculation for paper. 
 

As can be seen from figure 5 and Table 2, Schiller and 

Naumann correlation leads to higher terminal velocities 

and, consequently, a higher number of particles being 

collected at the bottom than expected, including paper 

particles. Ganser correlation, in its turn, gives more 

accurate results, since it considers particle geometry, 

which has an important influence on drag force. Figure 6 

summarizes the results of overall collection at the bottom 

of the windshifter.  

 

Figure 6. Overall collection at the bottom. 

FLUIDIZED BED SIMULATION 

Fluidized beds are widely used in plant operations, mainly 

due to their good mixing characteristics and high contact 

surface area between gas and solid phases. Despite their 

widespread application, much of the development and 

design of fluidized bed reactors has been empirical, as the 

complex behaviour of gas–solid flow in these systems 

makes modelling a challenging task (Taghipour et al., 

2005). With the development of computational 

technology, numerical simulation method has been used to 

provide complete information in a granular flow (Liu et 

al., 2013). 
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This section will describe a fluidized bed case simulated 

using Rocky®-ANSYS Fluent® coupling. Since this 

problem involves high concentrations of solids, two-way 

coupling is considered, meaning that fluid and particle 

phases have an influence on each other. Also, Huilin and 

Gidaspow drag law was used.  
 

The information for the case was published by USA’s 

National Energy Technology Laboratory (NETL, 2013) 

and consists of a small scale fluidized bed. General 

conditions of the problem can be found in the table that 

follows: 
 

Domain information 

Property Value 

Domain size (W x D x H) (mm) 23 x 8 x 123 

Grid cells (number of elements) 24 x 8 x 124 

Pressure intake 1 y-distance (cm) 4.13 

Pressure intake 2 y-distance (cm) 34.61 

Particle information – Group D Nylon beads (Spherical) 

Property Value 

Sieve size (mm) 3.256 

Density (kg/m3) 1131 

Mass of inventory (kg) 1.90 

Gas information 

Property Value 

Density (kg/m3) 1.20 

Viscosity (Pa.s) 1.9e-05 

Superficial velocity (m/s) 2.18 

Table 3: Domain and simulation set-up details. 
 

The gas distributor was not included, so gas enters the 

domain through the bottom with uniform superficial 

velocity. Gas then leaves the domain through the top, 

which is under atmospheric conditions. A uniform grid 

with an initial bed composed by 92949 spherical particles 

with diameter of 3.256 mm and initial height of 16.4 cm 

was prescribed in the beginning of the simulation. 

 

A uniform gas inlet was used, and velocity was prescribed 

in an increasing manner (from 0 m/s at t = 0s to case 

velocity at t = 2s), so that the beginning of the fluidization 

process could be observed. This strategy also provides 

more numerical stability. Standard k-ε turbulence model 

was applied. 
 

Predicted pressure drop between inlet and outlet by 

Ergun’s correlation was calculated for 3 different fluid 

volume fraction values (0.35, 0.4 and 0.45) for a range of 

fluid velocities. These curves are plotted as coloured 

dashed lines in figure 7.  
 

It is important to point out that these curves are only valid 

until fluidization starts, which happens at the point where 

the minimum fluidization velocity curve (black dashed 

curve in figure 7), obtained by equating the pressure drop 

to the effective weight of the particles at the moment of 

incipient fluidization, crosses the pressure drop curve.  
 

The simulated pressure drop between inlet and outlet 

versus the fluid superficial velocity is plotted in figure 7 as 

a continuous orange line. The agreement between the 

pressure drop predicted by Ergun’s correlation and the 

pressure drop obtained in the simulation is fairly good 

until fluidization takes place. 
 

The simulated pressure drop between the two pressure 

intake locations, as shown in table 3, is plotted in figure 8 

and compared to the averaged pressure drop value 

obtained experimentally. In the same plot, the dashed line 

marks the moment in which the minimum fluidization 

velocity measured at experiments is achieved, and this 

quite coincides with the point in which the behaviour of 

the pressure drop changes from linear to constant in the 

simulation. 

 

Figure 7. Pressure drop in fluidized bed case. Comparison 

between simulation and correlation results. 

 

Figure 8. Pressure drop between the two pressure intake 

locations. Comparison between simulation and 

experimental results. 

 

In order to observe the behaviour of the particles before 

and after fluidization starts, particles were divided into 7 

different groups according to their initial position, as can 

be seen in figure 9(a), and these particle groups were then 

tracked during time. Figure 9(b) shows the moment in 

which fluidization is about to start and, as expected, the 

positions of the particles and bed height is nearly the same 

from initialization. Figure 9(c) shows the fluidization 

process with the gas superficial velocity gradually 

increasing, while figure 9(d) shows the location of the 

particles at the moment in which final velocity is achieved. 

The bubble formation when beyond minimum fluidization 

velocity can observed, confirming the expected bubbly 

regime, characteristic of fluidized beds operation. Figure 

9(e) shows the increasing particle mixing and, lastly, 

figure 9(f) displays the particles configuration after 5s of 

simulation, showing that they are completely mixed, 

which confirms one of the main advantages of the 

industrial application of the fluidized bed concept. 

CONCLUSION 

In this article, coupling between DEM and CFD packages 

Rocky® and ANSYS Fluent® was presented. 

Mathematical modelling was described, focusing on DEM, 

CFD and coupling methods. 
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Figure 9. Evolution of particle behaviour with time. First 

figure shows the computational domain and fluid 

boundary conditions. 
 

A windshifter simulation was presented in order to 

highlight one-way coupling results. The method capability 

of considering the effect of drag force on the particles was 

demonstrated, and the importance of choosing suitable 

drag laws was pointed out.  

 

Also, a fluidized bed case, which consists of a dense flow 

example, was described. Two-way coupling was 

considered, showing good accordance to literature 

correlation, which states the capability of the fluid being 

affected by a reactive force. 
 

Future developments for this coupling include 

implementation of non-drag laws, thermal fluid-particle 

coupling and mass exchange between fluid and particles. 
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