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ABSTRACT 

Computational Fluid Dynamics (CFD) simulations are 

aimed to reconstruct the reality of fluid motion and 

behaviour as accurately as possible, to better understand 

the natural phenomena under specified conditions. Ideally, 

computational models would need to cover different scales 

and geometric configurations, and the classic CFD solvers 

most often require long computational times to satisfy the 

convergence criteria. With the advent of heterogeneous 

compute platforms (including Graphics Processing Units 

GPUs), CFD algorithms can now be implemented to give 

results in near real-time. The current paper briefly reviews 

and demonstrates in a general way, two methods able to 

harness the power of GPUs, to speed up numerical 

simulations of fluid flows for industrial applications. 

These include the Highly Simplified Marker and Cell 

Method (HSMAC), and Lattice-Boltzmann Method 

(LBM) implemented on GPUs using OpenCL. This paper 

describes general capabilities for compute and graphics, 

and method presented could be used to simulate various 

cases with a specific boundary conditions.  

NOMENCLATURE 

Cx coefficient X (1-5) depending on a specific case 

g gravitational acceleration 

fi pocket distribution 

l length of cube 

P pressure 

Pr Prandl number (ratio of momentum and thermal 

       diffusivities) 

Ra Rayleigh number (associated with buoyancy  

       driven flow, describes strength of convection) 

t time, time-step  

U velocity 

 

 thermal diffusivity 

 maximum temperature difference 

 density 

 thermal expansion coefficient  

v kinematic viscosity 

INTRODUCTION 

Experiments with fluids are usually very expensive and 

many times not feasible, or require work in harmful 

environments, etc. Therefore, in such cases, it is 

advantageous to replace them with numerical modelling 

whenever possible. The Computational Fluid Dynamics 

(CFD) that aims to reconstruct the reality of fluid motion 

and behaviour as accurately as possible in order to better 

understand the natural phenomena under specified 

conditions. Ideally, general solutions can also cover 

different scales and geometric configurations and should 

be in agreement with equivalent experimental results. 

Unfortunately, due to expensive algorithms, classical CFD 

codes most often require long computational times to 

satisfy the convergence criteria. With the advent of high-

performance GPUs with massively parallel multi-threaded 

architectures, basic CFD algorithms can now be 

implemented to give results in near real-time. The 

algorithms used to solve these problems utilize GPU and 

in this case OpenCL. Presented results demonstrate that 

GPUs can be successfully used to accelerate fluid 

simulations. We have seen significant gains in 

productivity and opportunity as a result of leveraging 

GPUs, being able to tackle computational problems in 

which execution time was previously infeasible. OpenCL 

was chosen for generality of running simulations on 

various platforms compared to CUDA which is just 

locking users to a specific platform. The codes could be 

easily ported to CUDA without difficulty. 

HSMAC FOR THERMAL FLUIDS 

Model Equations 

In order to solve general incompressible thermo-fluids 

problems in the Cartesian coordinate system, the Navier-

Stokes and energy equations can be defined as follows:  

                        (1) 

         (2) 

Dq

Dt
=C5Ñ

2q                                  (3) 

For generality, the equations presented are in non-

dimensional form. The same methodology can be applied 

to simulate a wide range of different fluid flows: pipe 

flows, forced convection, magneto-thermal convection, 

scaling analysis, exchange flows in reservoir models, 

mixing, fountain flows, bubble flow, step flows, heat 

exchangers, ventilation problems, etc. For instance, for 

square cavity heated from one vertical wall and cooled 

from the opposite one with top and bottom walls kept 

adiabatic, the coefficients for the dimensionless solution 

are defined as follows:  

C1 =1;  C2 = Pr =
n

a
;  C3 = PrRa =

n

a
×
gb(Dq)l3

an
 

C4 = 0;  C5 =1                              (4) 
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Numerical Approach 

These equations are approximated with finite difference 

equations and the HSMAC (Highly Simplified Marker and 

Cell) method (Bednarz et al. 2005-2010, Hirt 1975, A 

sample CPU based code is available online under 

https://bitbucket.org/tomaszbednarz/hsmac-bfc-2d) that is 

used to iterate mutually the pressure and velocity fields on 

a staggered mesh/grid allocation system, see Figure 1.  

The inertial terms in the momentum equations are 

approximated using a third-order upwind UTOPIA scheme 

(Tagawa 1996). The absolute convergence criteria for the 

numerical solutions are specified based on the residual 

sums of all conserved quantities. If the residual sum is less 

than 10-6 for each conserved quantity, the equations are 

deemed to have converged at a specific time step. The 

time-step is chosen to ensure numerical stability according 

to the CFL condition. The numerical methods used in this 

work for simulation of natural convection have been 

widely verified by co-workers, by both numerical and 

experimental investigations for closely related problems 

(Bednarz et al. 2005-2010). In this paper we focused on 

2D simulation, for simplicity, but also as the tested 

convections modes are accurately approximated using 2D 

geometry.  

 

 

Figure 1: Staggered mesh grid allocation (notice location 

of pressure, and velocity components for a cell). 

 

OpenCL Implementation 

The numerical code is ported from the CPU to GPU 

version using the OpenCL API (https://www.khronos.org). 

This was motivated by the need for improving 

computation speed, as in some cases, e.g. computation of 

single case of boundary layer evolution (Bednarz et al. 

2009) could take up to 12 hours on grid size 256x256. 

Therefore, all critical parts of the previously available 

CPU code are re-implemented in several OpenCL kernels 

that could be executed by thousands of simultaneous 

threads by a GPU. Figure 2 shows the flow chart of our 

HSMAC OpenCL solver. As seen, the initialization part 

includes: reading initial configuration files describing 

geometry and parameters of the problem to be computed, 

allocating memory for all field variables (pressure, 

velocity components, temperatures and spatial 

coordinates), preparing boundary condition flags (to mark 

regions where the boundaries are located and their type). 

Once that’s done, OpenCL is initialized, the proper 

compute device is attached to its context and the CL 

program is compiled. The device memory buffers are also 

created and filled with initial data.  

 

The solver / runtime execution of all OpenCL kernels is 

controlled by the host device (CPU). The flow chart shows 

two main loops: the outer loop, which is responsible for 

general time-step iterations and the inner loop used for the 

mutual iteration of velocity and pressure fields to satisfy 

the continuity equation, before solving each energy 

equation time-step (Hirt 1975). For instance, calculation of 

the pressure and velocity correction is done by execution 

of the kernel krnl_pressure_velocity_correction, 

calculation of the energy equation by krnl_energy, etc. In 

addition the interoperability feature of OpenCL with 

OpenGL can be used to visualize the results while they are 

still under computation. After reaching the final time step, 

all results can be saved on disk for further analysis and 

visualisation purposes. 

  

 

Figure 2: Flow chart of OpenCL based HSMAC solver.  

 

Figure 3 shows a simplified code snippet of a sample 

OpenCL kernel being used to calculate the horizontal 

component of the tentative velocity from the momentum 

equation. Please note, that all derivatives for the horizontal 

velocity are calculated at the middle of the right cell edge. 

For simplicity of presentation, convection acceleration is 

calculated using central approach. In real simulations, as 

mentioned UTOPIA was used for accuracy and stability. 

 

 

Figure 3: OpenCL code snippet of horizontal component 

of the momentum equation. 

 

These results showed speed-ups that can be achieved using 

GPU compute devices. Tests comparing NVIDIA S2050 

to Intel Core i7 showed an average 200-290X speedup of 

GPU/CPU. These results give an indication of what can be 

achieved when using OpenCL with today’s GPUs for 

solving explicitly the Navier-Stokes equation for natural 

convection flows, i.e. obtaining converged results in a few 

https://bitbucket.org/tomaszbednarz/hsmac-bfc-2d
https://www.khronos.org)/
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minutes instead of 10-12 hours. Please also refer to earlier 

published papers, that focus on applications for natural 

convection flows (including magnetic convection), and 

scaling analysis that verifies the correctness of the 

HSMAC method for fluid simulations (Bednarz, 2009).  

LATTICE-BOLTZMANN METHOD 

Method 

The Lattice-Boltzmann Method (LBM) is a newer class of 

computational fluid dynamics schemes that simulates fluid 

flow by solving a discretised Boltzmann equation in 

conjunction with particle collision models. Therefore, the 

method is dissimilar to other conventional CFD methods 

such as FDM presented earlier, in that it models fluids as 

fictitious, discrete particles versus a continuous medium, 

algorithmically performs particle streaming, and accounts 

for particle collision and boundary operators within a 

given domain. The HSMAC method presented above 

numerically solve the conservation equations of particular 

macroscopic quantities such as mass, momentum and 

energy. The LBM however, simulates fluid flow by 

tracking the collective kinetic behaviour of microscopic 

particles at each node within the lattice, then quantitatively 

accumulates “the behaviour” to obtain the averaged 

macroscopic properties. The collective behaviour of 

microscopic particles is represented by a distribution 

function, which indicates the most probable number of 

particles in a spatial unit volume at a specified position in 

time with given velocity. 

 

Due to its local character the basic LBM algorithm, it is 

very attractive for multi-core processors. The LBM has 

been extensively used in a non real-time GPU applications 

on single and multi-GPU systems using Nvidia only 

CUDA API (J. Tölke, 2010) as well as OpenCL 

(McIntosh-Smith et al. 2014) and OpenACC (Calore et al., 

2015). Here, we use LBM to get real-time fluid flow with 

an interactive visualisation on large 3-m hemispherical 

dome display with modern OpenGL using portable, 

vendor independent OpenCL implementation. 

 

For sake of simplicity of the prototype used for real-time 

tests, in our experiments, the D2Q9 model was used: each 

node builds nine interactions (Figure 4). Each node is 

associated with various attributes, such as packet 

distribution fi, density , and velocity u. The balance is 

represented by the following equation: 

fi(x+ ci, t +1)- fi(x, t) = -
1

t
fi(x, t)- fi

eq(x, t)( )       (5) 

where the left hand side of the equation represents the 

transport component, and right hand side collision. As the 

real challenge is three-dimensional flow we note here that 

the following discussion on implementation is valid in 3D 

case. The only modification required is basic extension of 

all fields into third dimension while the fundamental 

algorithm of LBM remains the same. 

 

Densities and velocities are derived from packet 

distributions, please refer to Chen and Doolean, (1993) for 

full details.  

 

 

Figure 4: The D2Q9 model, and corresponding packet 

distribution function.  

 

The code snippet below shows a basic CPU 

implementation for calculating density and velocity 

components, operating on two dimensional arrays: 

 
for (int i=0; i<L; i++) 

 for (int j=0; j<L; j++) 

 { 

     idx =  i+j*L; 

     U[idx]=V[idx]=R[idx]=0; 

  for (int k=0; k<9; k++)    

  {                         

   tmp = df[c][idx][k]; 

   R[idx] = R[idx] + tmp; 

   U[idx] = U[idx] + tmp*ex[k]; 

   V[idx] = V[idx] + tmp*ey[k]; 

  } 

  U[idx] = U[idx]/R[idx] + fx; 

     V[idx] = V[idx]/R[idx]; 

    // 

    // streaming + collision here 

     // ... 

} 

 

and also transport and collision: 
 

// transport + collistion  

for (int k=0; k<9; k++)   

{ 

 int ip = (i+ex[k]+L)%(L); 

 int jp = (j+ey[k]+L)%(L); 

 tmp = ex[k]*U[idx] + ey[k]*V[idx]; 

 feq = w[k]*rho*(1–1.5*(U[idx]*U[idx]+V[idx]*V[idx])+  

  3*tmp + 4.5 *tmp*tmp);                     

 if(FLAG[ip+jp*L] == 1) 

  df[1-c][idx][inv[k]] = (1-omega)*df[c][idx][k]+  

   omega*feq 

 else 

  df[1-c][ip+jp*L][k] = (1-omega)*df[c][idx][k]+ 

   omega*feq; 

} 

GPU Implementation 

The main CPU code for solving basic flows using LBM is 

very concise and simple, and can be extended easily to 

simulate, for instance, turbulence. The calculation for each 

node can be very easily parallelised and can utilise two-

dimensional GPU architecture memory buffers effectively. 

The code was initially ported to OpenGL compute shaders 

(http://bit.ly/1KbTdwe), but eventually migrated to 

OpenCL. 

The OpenCL implementation main kernel call is listed 

below, where basic LBM algorithm is placed below the 

computation of “idx” node index:  

 
kernel void lbm( 

 global float *U, 

 global float *V, 

 global float *R, 

 global int *F, 

 global float *f0, 

 global float *f1) 

{ 

 int i = get_global_id(0); 

 int j = get_global_id(1); 

 

 int idx = i+j*NX; 

 

 ... 

} 

 

http://bit.ly/1KbTdwe


 

 

Copyright © 2015 CSIRO Australia 4 

LBM RESULTS 

For visualisation, the high level C/C++ library 

openFrameworks was used for all low-level graphics 

maintenance such as opening the window, drawing 

primitives, and displaying on-screen information. Mass-

less particles were placed into the fluid flow profiles, as 

seen in Figure 5. 

 

Figure 5: Real-time LBM, runs 10FPS on GTX750M, 

domain size 1920x1080. 

 

Hemispherical Dome Visualisation 

The OpenCL LBM code was integrated with a  C++ dome 

twisting code, to display a full screen simulation on the 

hemispherical dome, as seen in Figure 6. 

 

 

Figure 6: Visualisation of fluid flow on the 3-m 

hemispherical dome. 

We found the overall speed of the LBM satisfactory for 

real-time applications. One should, however, keep in mind 

the limitations of the scheme itself as the method is nearly 

incompressible which may limit its usage in some specific 

applications. Also, an accuracy of the boundaries depends 

on the way they are handled which has to be considered if 

accuracy of the solution is an issue (Latt et. al. 2008). 

CONCLUSION 

The present paper briefly outlined the usefulness of GPUs 

to solve fluid flows problems. The numerical simulations 

were fast enough to be useful for real-time interactive 

visualisations.  
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