
Eleventh International Conference on CFD in the Minerals and Process Industries

CSIRO, Melbourne, Australia

7-9 December 2015

Copyright © 2015 CSIRO Australia 1

COMPUTATIONAL FLUID DYNAMICS AND GPUS

Tomasz BEDNARZ1,2*, Steven PSALTIS1,2, John A TAYLOR3, Maciej MATYKA4 and Ian TURNER1,2

1 School of Mathematical Sciences, Queensland University of Technology, Brisbane, AUSTRALIA
*Corresponding author, E-mail address: tomasz.bednarz@qut.edu.au

2ARC Centre of Excellence for Mathematical and Statistical Frontiers

3 CSIRO, Canberra, AUSTRALIA

4 Faculty of Physics and Astronomy, University of Wroclaw, Wroclaw, POLAND

ABSTRACT

Computational Fluid Dynamics (CFD) simulations are

aimed to reconstruct the reality of fluid motion and

behaviour as accurately as possible, to better understand

the natural phenomena under specified conditions. Ideally,

computational models would need to cover different scales

and geometric configurations, and the classic CFD solvers

most often require long computational times to satisfy the

convergence criteria. With the advent of heterogeneous

compute platforms (including Graphics Processing Units

GPUs), CFD algorithms can now be implemented to give

results in near real-time. The current paper briefly reviews

and demonstrates in a general way, two methods able to

harness the power of GPUs, to speed up numerical

simulations of fluid flows for industrial applications.

These include the Highly Simplified Marker and Cell

Method (HSMAC), and Lattice-Boltzmann Method

(LBM) implemented on GPUs using OpenCL. This paper

describes general capabilities for compute and graphics,

and method presented could be used to simulate various

cases with a specific boundary conditions.

NOMENCLATURE

Cx coefficient X (1-5) depending on a specific case

g gravitational acceleration

fi pocket distribution

l length of cube

P pressure

Pr Prandl number (ratio of momentum and thermal

 diffusivities)

Ra Rayleigh number (associated with buoyancy

 driven flow, describes strength of convection)

t time, time-step

U velocity

 thermal diffusivity

 maximum temperature difference

 density

 thermal expansion coefficient

v kinematic viscosity

INTRODUCTION

Experiments with fluids are usually very expensive and

many times not feasible, or require work in harmful

environments, etc. Therefore, in such cases, it is

advantageous to replace them with numerical modelling

whenever possible. The Computational Fluid Dynamics

(CFD) that aims to reconstruct the reality of fluid motion

and behaviour as accurately as possible in order to better

understand the natural phenomena under specified

conditions. Ideally, general solutions can also cover

different scales and geometric configurations and should

be in agreement with equivalent experimental results.

Unfortunately, due to expensive algorithms, classical CFD

codes most often require long computational times to

satisfy the convergence criteria. With the advent of high-

performance GPUs with massively parallel multi-threaded

architectures, basic CFD algorithms can now be

implemented to give results in near real-time. The

algorithms used to solve these problems utilize GPU and

in this case OpenCL. Presented results demonstrate that

GPUs can be successfully used to accelerate fluid

simulations. We have seen significant gains in

productivity and opportunity as a result of leveraging

GPUs, being able to tackle computational problems in

which execution time was previously infeasible. OpenCL

was chosen for generality of running simulations on

various platforms compared to CUDA which is just

locking users to a specific platform. The codes could be

easily ported to CUDA without difficulty.

HSMAC FOR THERMAL FLUIDS

Model Equations

In order to solve general incompressible thermo-fluids

problems in the Cartesian coordinate system, the Navier-

Stokes and energy equations can be defined as follows:

 (1)

 (2)

Dq

Dt
=C5Ñ

2q (3)

For generality, the equations presented are in non-

dimensional form. The same methodology can be applied

to simulate a wide range of different fluid flows: pipe

flows, forced convection, magneto-thermal convection,

scaling analysis, exchange flows in reservoir models,

mixing, fountain flows, bubble flow, step flows, heat

exchangers, ventilation problems, etc. For instance, for

square cavity heated from one vertical wall and cooled

from the opposite one with top and bottom walls kept

adiabatic, the coefficients for the dimensionless solution

are defined as follows:

C1 =1; C2 = Pr =
n

a
; C3 = PrRa =

n

a
×
gb(Dq)l3

an

C4 = 0; C5 =1 (4)

mailto:tomasz.bednarz@qut.edu.au

Copyright © 2015 CSIRO Australia 2

Numerical Approach

These equations are approximated with finite difference

equations and the HSMAC (Highly Simplified Marker and

Cell) method (Bednarz et al. 2005-2010, Hirt 1975, A

sample CPU based code is available online under

https://bitbucket.org/tomaszbednarz/hsmac-bfc-2d) that is

used to iterate mutually the pressure and velocity fields on

a staggered mesh/grid allocation system, see Figure 1.

The inertial terms in the momentum equations are

approximated using a third-order upwind UTOPIA scheme

(Tagawa 1996). The absolute convergence criteria for the

numerical solutions are specified based on the residual

sums of all conserved quantities. If the residual sum is less

than 10-6 for each conserved quantity, the equations are

deemed to have converged at a specific time step. The

time-step is chosen to ensure numerical stability according

to the CFL condition. The numerical methods used in this

work for simulation of natural convection have been

widely verified by co-workers, by both numerical and

experimental investigations for closely related problems

(Bednarz et al. 2005-2010). In this paper we focused on

2D simulation, for simplicity, but also as the tested

convections modes are accurately approximated using 2D

geometry.

Figure 1: Staggered mesh grid allocation (notice location

of pressure, and velocity components for a cell).

OpenCL Implementation

The numerical code is ported from the CPU to GPU

version using the OpenCL API (https://www.khronos.org).

This was motivated by the need for improving

computation speed, as in some cases, e.g. computation of

single case of boundary layer evolution (Bednarz et al.

2009) could take up to 12 hours on grid size 256x256.

Therefore, all critical parts of the previously available

CPU code are re-implemented in several OpenCL kernels

that could be executed by thousands of simultaneous

threads by a GPU. Figure 2 shows the flow chart of our

HSMAC OpenCL solver. As seen, the initialization part

includes: reading initial configuration files describing

geometry and parameters of the problem to be computed,

allocating memory for all field variables (pressure,

velocity components, temperatures and spatial

coordinates), preparing boundary condition flags (to mark

regions where the boundaries are located and their type).

Once that’s done, OpenCL is initialized, the proper

compute device is attached to its context and the CL

program is compiled. The device memory buffers are also

created and filled with initial data.

The solver / runtime execution of all OpenCL kernels is

controlled by the host device (CPU). The flow chart shows

two main loops: the outer loop, which is responsible for

general time-step iterations and the inner loop used for the

mutual iteration of velocity and pressure fields to satisfy

the continuity equation, before solving each energy

equation time-step (Hirt 1975). For instance, calculation of

the pressure and velocity correction is done by execution

of the kernel krnl_pressure_velocity_correction,

calculation of the energy equation by krnl_energy, etc. In

addition the interoperability feature of OpenCL with

OpenGL can be used to visualize the results while they are

still under computation. After reaching the final time step,

all results can be saved on disk for further analysis and

visualisation purposes.

Figure 2: Flow chart of OpenCL based HSMAC solver.

Figure 3 shows a simplified code snippet of a sample

OpenCL kernel being used to calculate the horizontal

component of the tentative velocity from the momentum

equation. Please note, that all derivatives for the horizontal

velocity are calculated at the middle of the right cell edge.

For simplicity of presentation, convection acceleration is

calculated using central approach. In real simulations, as

mentioned UTOPIA was used for accuracy and stability.

Figure 3: OpenCL code snippet of horizontal component

of the momentum equation.

These results showed speed-ups that can be achieved using

GPU compute devices. Tests comparing NVIDIA S2050

to Intel Core i7 showed an average 200-290X speedup of

GPU/CPU. These results give an indication of what can be

achieved when using OpenCL with today’s GPUs for

solving explicitly the Navier-Stokes equation for natural

convection flows, i.e. obtaining converged results in a few

https://bitbucket.org/tomaszbednarz/hsmac-bfc-2d
https://www.khronos.org)/

Copyright © 2015 CSIRO Australia 3

minutes instead of 10-12 hours. Please also refer to earlier

published papers, that focus on applications for natural

convection flows (including magnetic convection), and

scaling analysis that verifies the correctness of the

HSMAC method for fluid simulations (Bednarz, 2009).

LATTICE-BOLTZMANN METHOD

Method

The Lattice-Boltzmann Method (LBM) is a newer class of

computational fluid dynamics schemes that simulates fluid

flow by solving a discretised Boltzmann equation in

conjunction with particle collision models. Therefore, the

method is dissimilar to other conventional CFD methods

such as FDM presented earlier, in that it models fluids as

fictitious, discrete particles versus a continuous medium,

algorithmically performs particle streaming, and accounts

for particle collision and boundary operators within a

given domain. The HSMAC method presented above

numerically solve the conservation equations of particular

macroscopic quantities such as mass, momentum and

energy. The LBM however, simulates fluid flow by

tracking the collective kinetic behaviour of microscopic

particles at each node within the lattice, then quantitatively

accumulates “the behaviour” to obtain the averaged

macroscopic properties. The collective behaviour of

microscopic particles is represented by a distribution

function, which indicates the most probable number of

particles in a spatial unit volume at a specified position in

time with given velocity.

Due to its local character the basic LBM algorithm, it is

very attractive for multi-core processors. The LBM has

been extensively used in a non real-time GPU applications

on single and multi-GPU systems using Nvidia only

CUDA API (J. Tölke, 2010) as well as OpenCL

(McIntosh-Smith et al. 2014) and OpenACC (Calore et al.,

2015). Here, we use LBM to get real-time fluid flow with

an interactive visualisation on large 3-m hemispherical

dome display with modern OpenGL using portable,

vendor independent OpenCL implementation.

For sake of simplicity of the prototype used for real-time

tests, in our experiments, the D2Q9 model was used: each

node builds nine interactions (Figure 4). Each node is

associated with various attributes, such as packet

distribution fi, density , and velocity u. The balance is

represented by the following equation:

fi(x+ ci, t +1)- fi(x, t) = -
1

t
fi(x, t)- fi

eq(x, t)() (5)

where the left hand side of the equation represents the

transport component, and right hand side collision. As the

real challenge is three-dimensional flow we note here that

the following discussion on implementation is valid in 3D

case. The only modification required is basic extension of

all fields into third dimension while the fundamental

algorithm of LBM remains the same.

Densities and velocities are derived from packet

distributions, please refer to Chen and Doolean, (1993) for

full details.

Figure 4: The D2Q9 model, and corresponding packet

distribution function.

The code snippet below shows a basic CPU

implementation for calculating density and velocity

components, operating on two dimensional arrays:

for (int i=0; i<L; i++)

 for (int j=0; j<L; j++)

 {

 idx = i+j*L;

 U[idx]=V[idx]=R[idx]=0;

 for (int k=0; k<9; k++)

 {

 tmp = df[c][idx][k];

 R[idx] = R[idx] + tmp;

 U[idx] = U[idx] + tmp*ex[k];

 V[idx] = V[idx] + tmp*ey[k];

 }

 U[idx] = U[idx]/R[idx] + fx;

 V[idx] = V[idx]/R[idx];

 //

 // streaming + collision here

 // ...

}

and also transport and collision:

// transport + collistion

for (int k=0; k<9; k++)

{

 int ip = (i+ex[k]+L)%(L);

 int jp = (j+ey[k]+L)%(L);

 tmp = ex[k]*U[idx] + ey[k]*V[idx];

 feq = w[k]*rho*(1–1.5*(U[idx]*U[idx]+V[idx]*V[idx])+

 3*tmp + 4.5 *tmp*tmp);

 if(FLAG[ip+jp*L] == 1)

 df[1-c][idx][inv[k]] = (1-omega)*df[c][idx][k]+

 omega*feq

 else

 df[1-c][ip+jp*L][k] = (1-omega)*df[c][idx][k]+

 omega*feq;

}

GPU Implementation

The main CPU code for solving basic flows using LBM is

very concise and simple, and can be extended easily to

simulate, for instance, turbulence. The calculation for each

node can be very easily parallelised and can utilise two-

dimensional GPU architecture memory buffers effectively.

The code was initially ported to OpenGL compute shaders

(http://bit.ly/1KbTdwe), but eventually migrated to

OpenCL.

The OpenCL implementation main kernel call is listed

below, where basic LBM algorithm is placed below the

computation of “idx” node index:

kernel void lbm(

 global float *U,

 global float *V,

 global float *R,

 global int *F,

 global float *f0,

 global float *f1)

{

 int i = get_global_id(0);

 int j = get_global_id(1);

 int idx = i+j*NX;

 ...

}

http://bit.ly/1KbTdwe

Copyright © 2015 CSIRO Australia 4

LBM RESULTS

For visualisation, the high level C/C++ library

openFrameworks was used for all low-level graphics

maintenance such as opening the window, drawing

primitives, and displaying on-screen information. Mass-

less particles were placed into the fluid flow profiles, as

seen in Figure 5.

Figure 5: Real-time LBM, runs 10FPS on GTX750M,

domain size 1920x1080.

Hemispherical Dome Visualisation

The OpenCL LBM code was integrated with a C++ dome

twisting code, to display a full screen simulation on the

hemispherical dome, as seen in Figure 6.

Figure 6: Visualisation of fluid flow on the 3-m

hemispherical dome.

We found the overall speed of the LBM satisfactory for

real-time applications. One should, however, keep in mind

the limitations of the scheme itself as the method is nearly

incompressible which may limit its usage in some specific

applications. Also, an accuracy of the boundaries depends

on the way they are handled which has to be considered if

accuracy of the solution is an issue (Latt et. al. 2008).

CONCLUSION

The present paper briefly outlined the usefulness of GPUs

to solve fluid flows problems. The numerical simulations

were fast enough to be useful for real-time interactive

visualisations.

REFERENCES

BEDNARZ, T., TAGAWA, T., KANEDA, M., OZOE,

H. and SZMYD, J.S., (2005) “The convection of air in a

cubic enclosure with an electric coil inclined in general

orientations”, Fluid Dynamics Research, 36, 91-106.

BEDNARZ, T., LIN, W., PATTERSON, J.C., LEI, C.

and ARMFIELD, S.W., (2009) “Scaling for unsteady

thermomagnetic convection boundary layer of

paramagnetic fluids of Pr>1 in microgravity conditions”,

Int. J. of Heat and Fluid Flow, 30, 1157-1170.

BEDNARZ, T., CARIS, C., and TAYLOR, J., (2010),

“A practical introduction to Computational Fluid

Dynamics on GPUs”, Proc. GPU Technology Conference,

San Jose, USA, September 20-23.

BOTELLA, O., and PEYRET, R., (1998), “Benchmark

spectral results on the lid-driven cavity flow”, Computers

& Fluids, 27, 421-433.

CALORE, E., KRAUS, J., SCHIFANO, S.F., and ,

TRIPICCIONE, R., (2015) “Accelerating Lattice

Boltzmann Applications with OpenACC”, Euro-Par 2015:

Parallel Processing, Lecture Notes in Computer Science,

9322, 613-624.

CHEN, S., and DOOLEAN, G.D., (1998), “Lattice

Boltzmann Method for Fluid Flows”, Annual Review of

Fluid Mechanics, 30, 329-264.

DE VAHL DAVIS, G., (1983), “Natural convection of

air in a square cavity: a bench mark numerical solution”,

Int. J. of Numerical Methods in Fluids, 3, 249-264.

HIRT, C.W., NICHOLS, B.D., and ROMERO, N.,

(1975), “A numerical solution algorithm for transient fluid

flow”, Los Alamos Scientific Laboratory, LA-5852.

LATT, J. ,CHOPARD, B., MALASPINAS, O.,

DEVILLE, M., and MICHLER, A., (2008) "Straight

velocity boundaries in the lattice Boltzmann method",

Phys. Rev. E, 77, 056703.

MCINTOSH-SMITH, S., and CURRAN, D., 2013 and

2014, “Evaluation of a performance portable Lattice

Boltzmann code using OpenCL”, IWOCL '14 Proceedings

of the International Workshop on OpenCL 2013 & 2014.

TAGAWA, T., and OZOE, H., (1996), “Effect of

Prandtl number and computational schemes on the

oscillatory natural convection in an enclosure”, Numerical

Heat Transfer A, 30, 271-282.

TÖLKE, J., (2010), “Implementation of a Lattice

Boltzmann kernel using the Compute Unified Device

Architecture developed by nVIDIA”, Comput. Visual Sci.,

13, 29–39.

