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ABSTRACT 

Clusters in risers and bubbles in bubbling fluidized bed 
effect flow behavior and heat and mass transfer in gas-solid 
fluidized beds. A structure-dependent drag model is 
proposed to improve drag coefficient predictions for 
heterogeneous gas-solid flows with clusters in risers and 
bubbles in bubbling fluidized beds. To model bubbling 
fluidized beds, the local flow in the grid cell is resolved into 
three subsystems: the dilute phase that characterizes the 
bubbles, the dense phase that characterizes the emulsion, 
and the interphase between dense phase and dilute phase. In 
a riser, particle movements are in the form of clusters in the 
dense phase or in the form of a dispersed particle in the 
dilute phase in the grid cell. A micro-meso-grid scales 
equation set consists of six hydrodynamic equations and 
one stability criteria with bivariate extreme value theory as 
a function of eight independent variables and four 
dependent parameters on the basis of four grid parameters 
of velocity of gas and solids phases, volume fraction of gas 
phase and gas pressure gradient. The structure-dependent 
drag model is verified by CFD simulations by coupling 
with the two-fluid model in gas-solids fluidized beds. The 
distributions of velocity and volume fraction of clusters, 
and cluster diameters in a riser and the profiles of velocity 
and diameter of bubbles in a gas-solids bubbling fluidize 
bed are predicted. The simulated results are compared with 
experimental data.  

INTRODUCTION 

The clustering of particles in risers and bubbles in bubbling 
fluidized beds continue to be a fundamental issue in 
hydrodynamics of dense gas-solids flow. Experiments 
show that particle clusters and gas bubbles are existed in 
gas-solids fluidized beds. The formations of clusters and 
bubbles depend on operating conditions and material 
properties. In the case of circulating fluidized beds with 
Geldart Group A powders, the forces or possible 
interactions responsible for particle clustering include 
hydrodynamics (drag minimization), inelastic collisions, 
electrostatic charging, capillary and van der Waals forces. 
However, no one force may be responsible for all types of 
particle clustering and gas bubbles. It is more likely that 
several forces may play roles of varying magnitudes 
depending on the particles properties and local 
environments including velocity, solids volume fraction 
and fluid pressure. 

Computational fluid dynamics (CFD) is an effective tool 
for understanding the fundamental hydrodynamics of gas 
and particles in fluidized beds. However, a major challenge 
for CFD models is to realistically resolve the effect of 
clusters of bubbles on the momentum exchange between 

the gas phase and solids phase. Generally, the drag force 
acting on particles is represented by the product of the drag 
coefficient βgs and the slip velocity between the two 
phases. To date, several drag models have been developed 
to predict the interphase drag coefficient. A comparison of 
predicted drag coefficient using O’Brien and Syamlal drag 
model and Huilin-Gidaspow drag model (2012) is shown in 
Figure 1 as a function of solids volume fraction. It clear 
shows the clusters contribution on drag in gas-solids flow 
system. O’Brien and Syamlal drag model was limited to 
only two solid mass fluxes due to an empirical factor. The 
energy minimization multiscale approach (EMMS) 
developed by Li et al. (1999) has been used to predict 
steady flow in circulating fluidized beds. However, the 
validation of EMMS drag model is still a problem because 
the model equations stem from a global fluidized bed 
system, not for grid cells of numerical simulations. Also the 
equation for predicting cluster diameter is not valid to use 
in the counter-current flow with gas flow-up and clusters 
flow-down. On the other hand, the filtered drag models 
proposed by Sundaresan group (2011) and Simonin group 
(2013) are obtained using finely resolved simulations as the 
computational grid is refined and more flow structures are 
resolved. These filtered models are the analogue of 
large-eddy simulation of single phase turbulent flow, where 
one simulates spatial and spatio-temporal patterns 
occurring at the macro-scale using the conservations of 
mass and momentum, but accounts for the effects of 
meso-scale structures occurring at a scale smaller than the 
grid size through additional closure relations.  

0.0 0.1 0.2 0.3 0.4 0.5
100

101

102

103

104

105

106

ρs=1714 kg/m3, dp=76 µm

Gs=98 kg/m2s, Ug=3.7 m/s, 

Ug=4.3 m/s, Gs=147 kg/m2s

O'Brien-Syamlal drag model:

Huilin-Gidaspow drag model

β gs
 (

Ns
/m

)

εs  
Figure 1: Predicted drag by Huilin-Gidaspow and 
O’Brien-Syamlal drag models. 
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CLUSTER STRUCTURE-DEPENDENT (CSD) 
DRAG MODEL IN RISERS 

In the present work, an Eulerian multi-fluid model, which 
considers the conservation of mass and momentum for the 
solid and gas phases, has been adopted. The kinetic theory 
of granular flow, which considers the conservation of solid 
fluctuation energy, has been used for closure.  

Figure 2 shows the flow structure of particles in a grid cell 
which means particle movement is in the form of clusters in 
the dense phase or in the form of a dispersed particle in the 
dilute phase. This structure is described by eight 
independent variables. That is, gas volume fractions of the 
dilute phase and the dense phase (εdil, εden), gas 
superficial velocity of the dilute and the dense phases 
(Ug,dil, Ug,den), superficial velocity of particles in the dilute 
phase and the dense phase (Us,dil, Us,den), cluster size (dc) 
and volume fraction of dense phase (f). The parameters of a 
grid cell are velocities of gas and solids phases, gas volume 
fraction and gas pressure gradient along flow direction ug, 
us, εg and ∂p/∂y) from TFM. The mathematical model to 
describe flow behavior of gas and particles can be 
formulated as the following set of non-linear equations. 

1. Momentum equation for clusters in the dense 
phase along flow direction 

For simplicity, we assume that the stress tensor of dense 
phase is neglected. From the clusters momentum equation 
of dense phase along flow direction at the steady state is 
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2. Momentum equation for dispersed particles in the 
dilute phase along flow direction 

If the stress tensor of dilute phase is negligible at the steady 
state, the dispersed particles momentum equation of dilute 
phase along flow direction at the steady state is  
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3. Momentum equation for gas phase in the dilute 
and dense phases along flow direction 

The gas stress tensors of dense phase and dilute phase are 
also assumed to be neglected. The gas gravitational forces 
of the dilute phase and dense phase are negligible because 
of small gas density. The gas momentum equation of the 
dilute and dense phases is: 
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4. Mass balance of gas phase 

From the gas mass balance of dense phase and dilute phase, 
the velocity of gas phase in the cell is expressed as: 

, ,
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ε

 = + − 
            (4) 

5. Mass balance of solids phase 

From the mass balance of particles in the dense phase and 
dilute phase, the velocity of particles in the cell is expressed 
as: 
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6. Overall gas volume fraction 

(1 )g den dilf fε ε ε= + −
                     (6) 

 

 
Figure 2: Flow structure of clusters and dispersed particles in a grid cell.
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7. Stability criterion (minimization of energy 
dissipation by heterogeneous drag) 

The stability condition is expressed as the extremum of 
energy dissipation by drag per unit mass of particles. 
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8. Bivariate extreme value (BEV) theory 

In the bivariate extreme value (BEV) theory, the tail 
dependence parameters estimate numerically the 
importance of asymptotic dependence between two 
variables. The bivariate extreme value distribution can thus 
be described by a function of just one real variable, the 
dependence function. Using BEV theory, the stability 
condition Eq. (7) is expressed by 

{ }, , , , dil 1 den 2minimize (U , U , U , U ,f,d ) ( , )df g den s den g dil s dil cN R Rε ε  ∈ ∈ 

                                                      (8) 
where R1 and R2 are the domains of variation of εdil and 
εden.  

Thus, a micro-meso-grid scales (M2GS) equation set which 
comprises six hydrodynamic equations of Eqs. (1)-(6) and 
a stability condition of Eq. (8) with bivariate extreme value 
(BEV) theory is closed to solve eight independent variables 
(εgf, Ugf and Usf for micro-scale. f, εgc, dc, Ugc and Usc for 
meso-scale) and four dependent parameters (ag,den, ag,dil, 
as,den and as,dil) on the basis of grid parameters (εg, us, ug 
and dp/dy), seeing in Figure 3. Thus, the heterogeneous 
drag coefficient βgs is determined.  

Simulations are conducted using the CSD drag model and 
Huilin-Gidaspow drag models and results are compared 
with the experimental data of Wei et al. (1998)  measured 
in a 30.5 mm vertical pipe using a laser-Doppler 
velocimeter (LDV). The diameter and density of particles 

are 54 µm and 1398 kg/m3, respectively. Figure 4 shows 
the distribution of drag coefficient as a function of solids 
volume fraction. Roughly, the drag coefficient predicted by 
CSD drag model decreases, reaches minimum, and then 
increases with the increase of solids volume fraction. The 
drag coefficient by means of Huilin-Gidaspow drag model 
is also given as a function of solids volume fraction. The 
difference of drag coefficients between the CSD drag 
model and Huilin-Gidaspow drag model is obvious. We see 
that the heterogeneity reduces drag instead of increasing it 
at the low solids volume fraction. The reason is that when 
the flow is dilute, the particle collision probability is small, 
and results in decreased resistance with more gas flow 
through the dilute phase. So that the dilute phase occupies 
more space, and there are few opportunities to form clusters 
and the flow tends to be homogeneous. Gradually, the 
dense phase is formed as clusters, Huilin-Gidaspow drag 
model is also given as a function of solids volume fraction.  

The difference of drag coefficients between the CSD drag 
model and Huilin-Gidaspow drag model is obvious. We see 
that the heterogeneity reduces drag instead of increasing it 
at the low solids volume fraction. The reason is that when 
theflow is dilute, the particle collision probability is small, 
and results in decreased resistance with more gas flow 
through the dilute phase. So that the dilute phase occupies 
more space, and there are few opportunities to form clusters 
and the flow tends to be homogeneous. Gradually, the 
dense phase is formed as clusters, which act as large 
particles with the increase of solids volume fraction. The 
drag then decreases more rapidly than with the 
homogeneous drag. When the flow is dense, the particles 
tend to form clusters due to the large collision probability. 
As a result, the drag reaches a minimum. As the solids 
volume fraction increases beyond some critical value, the 
interaction between the dense phase and the dilute phase 
increases. Therefore, clusters can only form within a certain 
range of conditions. As the cluster effect disappears, the 
drag coefficient again approximates the homogeneous case 
predicted by means of Huilin-Gidaspow drag model. 
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Figure 3: CSD drag coefficient using M2GS model with BEV 
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Figure 4: Drag coefficient as a function of solids volume 
fraction 

Figure 5 shows the distribution of predicted cluster 
diameter as a function of solids volume fraction. Roughly, 
the predicted cluster diameters increase, reach maximum, 
and then decrease with the increase of solids volume 
fractions. As the amount of solids increases, particles tend 
to aggregate to achieve less resistance. This leads in general 
to larger diameter, and until the cluster size reaches a 
turning point. Beyond this turning point, the cluster 
diameters decrease, hinting at a possible change in the flow 
patterns over the region originally thought to be completely 
homogeneous. Harris et al. (2002) presented correlations 
for predicting the properties of cluster of particles traveling 
near the riser wall. The cluster sizes in experimental 
investigations usually refer to the mean vertical cluster 
length because of the considerable variation of cluster 
shapes. Thus, more attention should be paid to the physical 
definition when employing a cluster diameter correlation.  

This indicates the cluster diameter correlation has 
significant effect on the hydrodynamics predictions and 
should be selected carefully for the prevailing flow 
conditions.  
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Figure 5: Cluster diameter as a function of solids volume 
fraction 

Figure 6 shows the profile of predicted volume fraction of 
dense phase (f) and solids volume fraction of clusters 
(εs,den) as a function of solids volume fraction. Generally 
speaking, the predicted volume fractions of dense phase, f, 
increase, reach maximum, and then decrease with the 
increase of solids volume fraction. The solids volume 
fraction of clusters defines the ratio of the volume of 
particles in the clusters to the volume of dense phase of the 
grid cell. The high value of the solids volume fraction of 
clusters represents more particles within the cluster. We see 

that the clusters are dense with the increase of solids 
volume fraction. The calculated solids volume fraction of 
clusters using the correlation proposed by Gu and Chen 
(1998) is given as a function of solids volume fraction. 
Both numerical simulations and correlation give the solids 
volume fractions of dense phase increase with the increase 
of solids volume fraction. However, the difference between 
them is obvious. Examination of the correlation proposed 
by Harris et al (2002) concerning solids volume fraction of 
clusters suggests that the volume fraction of cluster requires 
the local instantaneous solid concentration greater than the 
time-mean solid concentration by at least n times the 
standard deviation. A cluster would thus be identified if the 
instantaneous solid concentration exceeds this threshold.  
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Figure 7 shows a comparison of experimental and 
computed solids volume fraction profiles at two heights. 
Both drag models give a high solids volume fraction near 
the walls, and a low volume fraction of particles at the 
center regime. Comparing to simulations by means of 
Huilin-Gidaspow drag model, the predictions using CSD 
drag model give a reasonable quantitative agreement with 
experiments. The predictions by means of CSD drag model 
show a profile of the experimental data more accurately 
than those using Huilin-Gidaspow drag model at height of 
3.92 m. At 6.26 m height, the simulation using 
Huilin-Gidaspow drag model gives a reasonable qualitative 
and quantitative agreement with the experimental data at  
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the center regime of the riser. However, near the wall, only 
the CSD drag model shows a quantitative agreement with 
the experimental data, whereas, the Huilin-Gidaspow drag 
model shows wide discrepancies. 

BUBBLE-STRUCTURE-DEPENDENT (BSD) DRAG 
MODEL AND SIMULATIONS OF BUBBLING 
FLUIDIZED BEDS 

To model bubbling fluidized beds, the local flow in the grid 
cell is resolved into three subsystems: the dilute phase that 
characterizes the bubbles, the dense phase that 
characterizes the emulsion, and the interphase between 
dense phase and dilute phase, as is displayed in Figure 8. 
For the dense phase and dilute phase, gas and particles are 
accelerated or decelerated by complex interactions. Such 
structure is described by six independent variables. That is, 
gas volume fractions of the bubble phase and the emulsion 
phase (εb, εe), gas superficial velocity of the emulsion and 
the bubble phases (Ug,e, Ub),  superficial  velocity of 
particles in the emulsion phase (Us,e), bubble size (db) and 
volume fraction of bubble phase (b). Here, as a first 
approximation, particles in the bubble phase is assumed 
negligible, so, εb = 1.0. These six parameters depends on 
velocities of gas and solids phases, gas volume fraction and 
gas pressure gradient along flow direction (ug, us, εg and 
∂p/∂y) of a grid cell. 

1. Momentum equation of particles in emulsion 
phase along flow direction 

The momentum equation of particles in emulsion 
phase along flow direction at the steady state is 

,

(1 )(1 )
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b e s p s e s
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p
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δ ε ρ ρ
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where ps is the normal force due to the collisions of 
particles which is predicted by the modulus of particles 
compressibility. Fde and Fdb are the drag forces between gas 
phase and particles, and interphase interactions between 
bubble and particles. as,e is the acceleration of particles in 
the emulsion phase. 

2. Momentum equation of gas phase in emulsion 
phase and bubble phase along flow direction 

The momentum equation of gas phase in bubble phase 
along flow direction at the steady state is 

,(g )= − ∇ − ∇ − +b db b b b p g bn F p p aδ δ ρ        (10)             

where Fdb is the drag forces of bubbles. ag,b is the 
acceleration of bubbles.  
The momentum equation of gas phase in emulsion phase 
along flow direction at the steady state is 
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where Fdb is the drag forces of bubbles. ag,e is the 
acceleration of gas phase in the emulsion phase. Combining 
Eq. (10) and (11), it gives a momentum equation of gas 
phase in a gird cell. 
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3. Mass balance of gas phase 

From the gas mass balance of emulsion phase and bubble 
phase, the velocity of gas phase in the cell is expressed as: 
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4. Mass balance of solids phase 

From the mass balance of particles in the emulsion phase 
and bubble phase in which without particles, the velocity of 
particles in the cell is expressed as: 
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5. Overall gas volume fraction 
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Figure 8: Flow structure of bubbles and emulsion phase in a grid cell 
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6. Stability criterion (minimization of energy 
dissipation by heterogeneous drag) 

The stability condition of gas and bubbles is expressed as 
the extremum of energy dissipation by drag per unit mass of 
particles. 

 
df e de g,e b db b b

g s

1 [ ] minimum
(1 )

N n F U n F U δ
ε ρ

= + →
−  

                                                     (16) 

Thus, a micro-meso-grid scales (M2GS) equation set which 
comprises five hydrodynamic equations of Eqs. (9), (12), 
(13)-(15) and a stability condition of Eq. (16) is closed to 
solve six independent variables (εe, Ug,e and Us,e for 
micro-scale. δb, db and Ub for meso-scale) on the basis of 
grid parameters (εg, us, ug and ∂p/∂y). Thus, the 
bubble-structure-dependent (BSD) drag coefficient βBSD is 
determined.  
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εβ −
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                (17) 

Hence, three dependent parameters of accelerations (ag,e, 
as,e and ag,b) are also calculated from six independent 
variables. Figure 9 shows the drag coefficients predicted by 
BSD drag coefficient and Gidaspow drag model as a 
function of solids volume fractions in a gas-particles 
bubbling fluidized bed. Both drag coefficients are increased 
with the increase of solids volume fractions. We also find 
that drag coefficient predicted by Gidaspow drag model is 
larger than that predicted by BSD drag coefficient model.  
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Figure 9: Profile drag coefficients as a function of solids 
volume fractions 

Figure 10 shows the contour plot of an instantaneous solid 
volume fraction obtained by simulation and experimental 
data measured by an electrical capacitance tomography 
(ECT) sensor at the inlet superficial gas velocity of 0.55 
m/s. It can be observed that the model prediction can 
capture a distribution similar to that of the measured result. 
There is an accumulation of particles toward the walls 
owing to the wall friction. The motion of bubbles in the 
center leads to a lower solid volume fraction. In comparison 
to the solid distribution at low velocity, a high inlet velocity 
enhances the lateral discrepancy of the solids volume 
fractions. Figure 11 shows the solids volume fractions are 
low in the center regime and increases toward the wall. The 
BSD drag model can obtain a fair prediction with 
experimental data. The traditional Gidaspow drag model 
under predicts the solids volume fractions, which is related 

to the overlook of the mesoscale structure effect. The 
prediction by BSD drag model can agree reasonably with 
the experimental data using coarse-grid resolution. From 
the profiles of solid volume fractions, a higher operating 
velocity results in a significant lateral discrepancy in the 
solid distribution. 
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 (b) Experiment 
Figure 10: Comparisons of simulated results (a) and 
measured data (b) in a bubbling fluidized bed 
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Figure 11: Profile of measured and simulated solids 
volume fractions 

4. CONCLUSION 
The present CSD drag model is solved by means of a 
micro-meso-grid scales (M2GS) equation set which 
consists of six hydrodynamic equations and one stability 
criteria with bivariate extreme value (BEV) theory as a 
function of eight independent variables (Ug,den, Us,den, Ug,dil, 
Us,dil, εg,dil , εg,den, f and dc) and four dependent parameters 
(as,den, ag,den, as,dil and ag,dil) describing flow of micro-scale 
of dispersed particles and meso-scale of clusters on the 
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basis of grid parameters (εg, us, ug and ∂p/∂y). Predictions 
using CSD drag model show reasonable quantitative 
agreement with the experimental data.  

A BSD drag coefficient model is developed to account for 
the effect of bubbles structure solving six independent 
variables (εe, Ug,e and Us,e for micro-scale. δb, db and Ub for 
meso-scale) based on the grid parameters (εg, us, ug and 
∂p/∂y) in bubbling fluidized beds. The effects of solid 
pressure due to particle-particle collisional interaction and 
bubble-induced added mass force are evaluated. 
Predictions using BSD drag model show reasonable 
quantitative agreement with ECT experimental data. 
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