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ABSTRACT

The presence of surfactants, ubiquitous at most gas/liquid
interfaces and particularly at the air/water interface, has a
pronounced effect on the stress balance at the interface,
and this in turn is nonlinearly coupled to the bulk flow.
Forces acting on the interface include surface tension
gradients and the viscous resistance to shear and dilation.
These viscoelastic properties vary with the surfactant
concentration at the interface.  The surface tension and
surface shear viscosity were measured directly over a
range of surface concentration of hemicyanine (an
insoluble surfactant).  Here, we present a fundamental
description of the interface and its coupling to the bulk
flow, and develop a Navier-Stokes numerical model.
Numerical studies of a canonical flow are presented,
comparing contaminated interface cases with that of a
clean interface and a rigid no-slip surface, providing
added insight into the altered dynamics that result from
the presence of a small amount of surfactants.

NOMENCLATURE

c dimensionless surfactant concentration
cc characteristic surfactant concentration
co initial dimensionless surfactant concentration
Ca capillary number
d depth of fluid
Ds surface diffusivity
nr number of radial nodes
nz number of vertical nodes
r dimensionless radial coordinate
ri inner cylinder radius
ro outer cylinder radius
Re Reynolds number
Pes surface Peclet number
t dimensionless time
u dimensionless radial velocity
v dimensionless azimuthal velocity
x dimensionless radial gap coordinate
z dimensionless axial coordinate
α dimensionless parameter in (4)
β dimensionless parameter in (4)
Γ dimensionless angular momentum
δt dimensionless time-step
η dimensionless azimuthal vorticity
κ dimensionless surface dilatational viscosity
λ dimensionless surface shear viscosity
µ dynamic viscosity
µ s surface shear viscosity
ν kinematic viscosity

 ρ density
 σ dimensionless surface tension
 σc characteristic surface tension
 θ angular displacement
 ψ dimensionless streamfunction
Ω angular velocity of the floor

INTRODUCTION

In slightly contaminated situations, particularly when the
inertial time scales are small compared to the time scales
associated with transport kinetics, the liquid/gas interface
tends to be swept clean by the bulk flow in the upstream
region, and the surfactant molecules tend to accumulate
downstream.  The separation between clean and surfactant
laden interface tends to be a sharp front.  This is readily
observed upstream of a surface barrier or on rising
bubbles.  The location of the front and the concentration
level downstream of the front play a major role in
determining the dynamics, not only of the flow at the
interface, but of the entire coupled interface/bulk flow
field.  The question naturally arises: What determines the
location of the contamination front and the surfactant
concentration distribution downstream of it?  The answer
lies in the coupling between the bulk flow, the Marangoni
elasticity, and surface viscous and diffusion effects.  The
Marangoni elasticity, due to surface tension gradients, and
the surface viscosities, are functions of the
thermodynamic state of the interface and hence the local
concentration.  In order to answer the question, one needs
to solve a coupled system, consisting of the Navier-Stokes
equations for the bulk flow, advection-diffusion of the
(active scalar) concentration of surfactant, and the
tangential stress balances at the interface.  If the interface
is not flat, the normal stress balance also needs to be
included.
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Figure 1:  Schematic of the deep-channel viscometer.
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GOVERNING EQUATIONS

The flow consists of fluid of density ρ, molecular
viscosity µ, and kinematic viscosity ν (the actual
experiments use water at room temperature, 23 ± 1 °C),
contained in a circular annular region of inner radius ri

and outer radius ro, filled to a depth d.  The two cylinder
sidewalls are stationary, and the bottom endwall rotates at
a constant rate Ω.  The top surface of the fluid is exposed
to air, and has a (monomolecular) surfactant film on the
interface.  Initially, everything is at rest, and a known
amount of surfactant is uniformly spread on the interface.
At time t = 0, the bottom endwall is impulsively started.
A schematic of the flow apparatus
is shown in Fig. 1.

The governing equations are the axisymmetric Navier-
Stokes equations, together with the continuity equation
and appropriate boundary and initial conditions.  Using a
cylindrical polar coordinate system (r, θ, z) and the Stokes
streamfunction ψ, the nondimensional velocity and
vorticity vectors are, respectively,

−
1
r

∂ψ
∂z

,
Γ
r

,
1
r

∂ψ
∂r

 
 

 
  and  −

1
r

∂Γ
∂z

,η,
1
r

∂Γ
∂r

 
 

 
  .

We shall use ro as the length scale and 1/Ω as the time
scale, and define a Reynolds number Re =Ω  ro

2 / ν .

The nondimensional axisymmetric Navier-Stokes
equations are:
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The boundary conditions on the solid boundaries are no-
slip; i.e. the normal and tangential derivatives of ψ vanish,
Γ = 0 on the stationary cylinder walls and Γ = r2 on the
rotating endwall.  The azimuthal vorticity η on the solid
boundaries is determined by evaluating (3) on the
boundaries once ψ is known.  On the air/water interface,
being a material surface, ψ is continuous with its value on
the sidewalls, which we set to zero without loss of
generality.  We shall assume that the interface is flat,
and hence the contact angle at the air/water/solid is
90° (in the experiments we fix the location of the contact
line by depositing a non-wetting parafin film above z = d
on the glass walls).  This leaves the conditions for Γ and η
on the interface to be specified.
Our treatment of the interface follows that of Scriven
(1960); except that we allow the surface viscosities to
vary with variations in the surfactant concentration (see

Lopez & Hirsa, 1998 and Lopez & Chen, 1998) for a
detailed treatment). We also allow for a nonlinear
equation of state.  For hemicyanine at an air/water
interface at room temperature, we have measured using
standard techniques (Wilhelmy plate measurement with an
electrobalance on a Langmuir trough) the surface tension
as a function of surfactant concentration, up to a surface
coverage where the monolayer undergoes a phase
transition (Adamson, 1990 and Gaines, 1966).
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Figure 2:  Equation of state, σ vs. c,  for hemicyanine at

the air/water interface at room temperature; the • symbols
are experimental measurements of Hirsa et al. (1997), and
the solid line is the model eq. (4).

The measured equation of state is presented in Fig. 2,
along with a model that fits the data over a large range of
c, given by the equation

σ = 1 +
α

σc
tanh(β(1 − c)), (4)

where the surface tension, σ, has been non-
dimensionalized with a characteristic surface tension, σc =
66 dynes/cm (milli-Newton/m), and the surfactant
concentration, c, has been nondimensionalized with the
corresponding characteristic concentration, cc = 0.856
mg/m2.  The two parameters α and β used to match the
model to the data are related to the saturation surface
pressure, i.e. the range in surface tension between that of a
clean interface and a saturated one, and the Marangoni
number which is related to the slope of the equation of
state at the inflection point.  For this particular system, α
= 6.3 and β = 6.2.  Note that this equation of state is much
flatter at small c than the often used Szyskowsky equation
(e.g. see Edwards et al. 1991) for idealized gas-like
surfactants at low concentration.  The flat behavior of σ at
small c is representative of insoluble monolayers (Gains
1966).

The surface viscosities are also nonlinear functions of the
thermodynamic state of the interface.  Using a deep
channel viscometer, we have measured the surface shear
viscosity, µs, for our surfactant system over the same
range of c as given in the equation of state, and fitted a
model equation to the data (see Fig. 3).  The model
equation for the nondimensional surface shear viscosity is

λ =1.15  x 10
−3 −1+ exp(2.6c)[ ], (5)
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where λ = µs/(µro).  The surface dilatational viscosity, κ
(nondimensional), will have to be modeled since it has not
yet been measured consistently with any two different
experimental techniques for any surfactant (Edwards et al.
1991).  We shall model κ as being equal to the shear
viscosity, k = λ.
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Figure 3:  Surface shear viscosity, µs vs. c, for
hemicyanine at the air/water interface at room

temperature; the • symbols are experimental
measurements and the solid line is the model eq. (5).

Since the surface tension, σ, and the surface viscosities, λ
and κ, are all functions of the surfactant concentration c,
we need to solve an active scalar advection-diffusion
equation for c:
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where Pes = Ωro
2 / Ds  is the surface Peclet number and Ds

is the surface diffusion of the surfactant; Ds is estimated to
be of order 10-5 cm2/s for typical surfactants (Agrawal &
Neuman 1988).  For hemicyanine, Hirsa et al. (1997)
estimated an upper bound Ds < 10-6 cm2/s.  For Re = 2000,

Ωro
2 = 20 cm2/s (ro = 9.61 cm), and in the computations

we use Pes up to 105;  this upper value is essentially
determined by the available grid resolution.

For a flat interface, only the tangential stress balance plays
a dynamic role.  The stress balance in the azimuthal
direction is
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and in the radial direction
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where Ca = µΩro/σc  is the capillary number. Both (7)

and (8) are solved at the interface z = d. The flat interface
assumption here is expected to be valid given that the
experimental conditions give Froude No. << 1.

NUMERICAL TECHNIQUE

Due to the nonlinear coupling between the bulk flow and
the boundary conditions, an explicit time integration is
implemented.  We begin by discretizing in space using
second-order centered differences.  Equations (1, 2) then
have the form

dΓi, j

dt
= RHS1(Γ,ψ ), (9)

dηi , j

dt
= RHS2(η,Γ,ψ). (10)

The computational domain is r ∈ [ri  / ro,1], z ∈ [0,d/ro]
with r = ri  / ro + i(1 - ri    / ro)/nr for i ∈ [0,nr], and z =
j(d/ro) (1 - ri  / ro)/nz for j ∈ [0,nz] (for the results
presented here, nr = nz = 160, d/ro = 0.8, and ri  / ro =
0.7865).

Starting from a set of given initial conditions, the interior
values of Γi,j and ηi,j (i ∈ [1, nr-1] and j ∈ [1,nz-1]) are
evolved forward in time using a second-order predictor-
corrector scheme.  Denoting the current time by
superscript k, the predictor stage by superscript *, and the
next (corrected) stage by k + 1, we first evaluate

Γ i,j
* = Γi,j

k + δt  RHS1
k
,

and
ηi, j

* = η i, j
k +δt  RHS2

k  .

At this stage, we need to solve the elliptic equation (3) for
ψ* with the interior points for η* just computed.  Then,
the surfactant concentration is advected by this stream-
function.  So equation (6) is solved for c* with ψ*, and the
boundary conditions ∂c/∂r = 0 at r = ri/ro and 1 (thus
conserving total surfactant on the interface).  This
evolution is also done by the predictor-corrector scheme.
One needs to do the full two stages to get from* ck to c**

to c* both stages using ψ*.  With c* (r), we evaluate
σ(c*(r)), λ(c*(r)), κ(c*(r)), and their radial derivatives.
The boundary conditions for Γ* and η* are then evaluated.
On the no-slip boundaries, this is straight forward.  For
the interface, we require the normal derivative of ψ at the
interface (use one-sided differences) and its radial
variations, and then solve equations (7, 8).  Equation (7)
is a second-order ODE for Γ at z = d, which reduces to a
tridiagonal solve.  Equation (8) is a straight forward
evaluation now that we have the surface tension gradient
and surface viscosities and their gradients.  We now have
everything (Γ,η,ψ, and c) at the predictor stage, and can
repeat the whole process to everything to the corrector
stage.  We evolve Γ and η using

Γ i,j
k+1 = 0.5(Γ i, j

k + Γ i, j
* +δt  RHS1

* ),

and
ηi, j

k +1 = 0.5(ηi, j
k + ηi, j

* +δt  RHS2
* ).

The explicit time stepping technique places a CFL-type
restriction on the time step which is more severe as co and
Pes  increase.  For the  results presented here, δt was in the
range 10-2 - 10-4.

RESULTS

All the results presented here are in the annular deep-

channel geometry for Re = 2000 and Ca
-1

 = 3630.  For
an air/water interface with a hemicyanine monolayer,
there are only two parameters that have not been directly
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measured.  These are the surface Peclet number, Pes, and
the (non-dimensional) surface dilatational viscosity, κ,
which varies with c.  In the following, we shall present
how this system behaves for various Pe s   with κ set equal
to λ in the low c regime, where the elasticity in relatively
low.  In this flow regime, when the initial uniform
surfactant distribution has co < 0.35, the bulk flow is able
to overcome the elasticity of the interface and clean a
portion of it, forming Reynolds ridge separating the clean
from the contaminated surface (see Scott 1982).

Effects of Pes on the contamination front

Effects of Pes are only important when there are large
gradients in c (this is particularly so at the contamination
front).  At the contamination front, the large jump in
concentration leads to a large production of surface
azimuthal vorticity, η at z = d, from the ∂σ/∂r = ∂σ/∂c
∂c/∂r term in (8).  The surfactant front is distinguished by

a sharp peak in η, whose width varies as1/ Pe
s .  Figure

4 shows the effect of varying Pes on η at z = d (in these
calculations, the surface viscosity terms in (7) and (8)
were artificially set to zero, since these terms will also
have a tendency to smear out the contamination front).
This plot indicates that for hemicyanine at Re = 2000, the
corresponding surface diffusivity (Pes > 106) would not
alter the surfactant distribution behind the contamination
front. (We introduce a radial gap coordinate, x = (r - ri /
ro) / (1 - ri / ro)).
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Figure 4:  Azimuthal vorticity profiles, η at z = d, for
various Pes as indicated, with co = 0.25 and zero surface
viscosities.

The bulk secondary flow, which drives the interfacial
flow, is depicted in Figure 5, showing the contours of the
streamfunction ψ.  This bulk flow overturns in the
counter-clockwise direction.

Figure 5:  Streamfunction contours with co = 0.25.

Effects of co on the contamination front

A contamination front only forms when there is a balance
between the interfacial viscoelasticity and the bulk flow
near the interface.  In the absence of the viscoelasticity,
the surfactant molecules would act as passive scalar,
advected by the bulk flow at the interface, and so would
accumulate at the inner cylinder wall since they are
insoluble.  For a description of the flow in this geometry,
in the absence of surfactants, see Lopez & Hirsa (1998).

There are three mechanisms at play that prevent such a
build up at the inner cylinder wall, each of which
dominate at different concentration and concentration
gradient levels.  If the concentration levels tend to become
large (as they would be if the surfactants started to pile up
at  the inner cylinder), then their finite diffusivity, Pes,
would oppose such a build up, smearing them out over a

length1/ Pe
s .  Such a mechanism would also be present

if c were a passive scalar.  However, c is an active scalar
that determines the surface tension and surface viscosities
(through equations 4 and 5), which in turn determine the
stress balances at the interface that feed into the bulk flow
as boundary conditions for the vorticity and angular
momentum.  This then introduces two additional
mechanisms which resist the surfactant pile up and also
tend to smear out any contamination front.  The surface
viscosities will tend to oppose the build up of surfactant
by the bulk flow compression of the interface; this is
triggered not only by the concentration gradient, but also
by the concentration level.  Figure 3 shows how λ
increases exponentially with c for hemicyanine.  The third
mechanism, which in the cases presented here is
dominant, is  the Marangoni stress ∂σ/∂r which imparts an
elasticity to the interface that resists the build up of
surfactants due to the stretching and compacting of the
interface by the bulk flow.  For the insoluble system being
studied, however, once the concentration level drops
below a certain level (about c = 0.3), the Marangoni stress
mechanism essentially vanishes (see Fig. 2), allowing the
surface to be cleaned by bulk flow advection.  As the
concentration builds up at small radii, the Marangoni
stress rapidly increases, and this mechanism tends to
smear the surfactants out towards a uniform
concentration.  So we find that the contamination front
essentially forms where the competition between the bulk
flow advection and the Marangoni stress just balance, and
this for our bounded, insoluble system depends critically
on the total amount of surfactant residing on the interface.
We measure this by co, the initial uniform concentration
distribution.
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Figure 6:  Surfactant concentration profiles c at steady
state, with initial uniform distribution c = co, for co as
indicated.
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Figure 7:  Azimuthal vorticity profiles, η at z = d, for
various initial uniform distribution c = co, for co as
indicated; the dot-dash line corresponds to a no-slip
surface.

Figures 6 and 7 show the steady state concentration
distributions and azimuthal vorticity profiles at the
interface that result for different values of co.  We find that
if the initial concentration level is very low (co < 0.01),
the Marangoni stress is essentially zero, the bulk flow
advects all the surfactant in towards the inner cylinder,
and the surface diffusion (and to a lesser extent the
surface viscosity) mechanism determines the equilibrium
surfactant distribution.  For co between about 0.05 and
0.28, the Marangoni stress dominates in the determining
the equilibrium c distribution, and the radial location of
the contamination front varies linearly with co.  For co

above about 0.3, the Marangoni stress is so large that it
completely dominates, not only the surface diffusion and
viscosities, but also the bulk flow, and it almost
completely resists the formation of surfactant gradients.
These values of co are for the strength of the secondary
bulk flow corresponding to Re = 2000 and d/ro = 0.8.  For
larger Re and smaller d/ro, the secondary flow is stronger
and the co range over which a contamination front can
form is extended.
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Figure 8:  Radial velocity profiles, u at z = d, for various
initial uniform distribution c = co, for co as indicated; the
dot-dash line corresponds to a clean interface.

Typically when the Marangoni stress is dominating, the
interface is thought of as immobile, acting as a no-slip
surface.  But this is only true for the velocity components
in the directions that would have led to surfactant
concentration.  So in this axisymmetric swirling flow, this
direction is radial.  In the azimuthal direction, since the
flow is axisymmetric, there are no azimuthal gradients of
surfactant (or anything else for that matter), and so there
are no Marangoni stresses acting in that direction.  The
result is that in the radial direction, the Marangoni stress
makes the interface act like a no-slip surface, but in the
azimuthal direction it is essentially stress-free (there are
some contributions from the surface shear viscosity,
through equation 7).  Figures 8 and 9 illustrate this
phenomena.  This has fundamental consequences for
models of contaminated interfaces that are not two-
dimensional; surfactant coverage does not simply mean
that the interface is no-slip.

It is of interest to compare our results with recent
numerical models of contaminated gas/liquid interfaces.
Bel Fdhila & Duineveld (1996) considered the steady rise
of an air bubble in water where surfactants accumulated
on the bubble surface for Reynolds numbers up to 500.
They modeled the interface as being stress-free upstream,
and no-slip downstream, of a contamination front.  In the
bubble dynamics literature, the contaminated downstream
part is often called a stagnant cap.  As is typical in bubble
models, they impose the location of the front (aka the cap
angle).  Although they do not solve for the stress balance
as would be described by equations of the form (7) and
(8), they do obtain very similar results for η and u at the
interface.  Comparing their figure 4 with our figure 7, one
sees very similar behavior; the sharp peak in η at the
front, the strength of the peak reaching a maximum when
the front forms at the half-way mark (mid-gap in our
annulus and at the bubble equator), and how η approaches
the profile corresponding to a no-slip solid wall
downstream of the front.  Their figure 6 and our figure 8
for the streamwise velocity at the interface also show a
striking similarity.  In both cases, the streamwise velocity
asymptotes to that corresponding to a stress-free interface
as the interface is cleaned (as is to be expected), and
downstream of the contamination front, this velocity
component goes to zero.  In spite of this level of
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agreement, the straightout use of the no-slip condition on
the contaminated side of the front is not appropriate; if it
was, then v would vanish, yet when the proper stress-
balance is imposed, v clearly does not vanish (see Fig.  9).
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Figure 9:  Azimuthal velocity profiles, v at z = d, for
various initial uniform distribution c = co, for co as
indicated in figure 7; the dot-dash line corresponds to a
clean interface.

CONCLUSION

A fully coupled viscoelastic interfacial flow with a
swirling bulk flow has been modeled numerically for flow
and material properties corresponding to a physical
air/water system with a hemicyanine monolayer.  For the
present numerical calculations, the equation of state, σ(c),
was measured in the laboratory for the hemicyanine
modeled in this study.  The calculations show that the
surfactant distribution and the stress balance are critically
dependent on the form of this function which can vary
significantly between different classes of surfactants
(namely gas-, liquid-, or solid-like surfactants systems;
e.g. see Adamson, 1990; Gaines, 1966) as well as between
different surfactants in a given class.  There are additional
factors that will play a role in determining the
hydrodynamic coupling between the interface and the
bulk if the surfactant has finite solubility in the bulk.

For the results presented here, in the small concentration
regime, the Marangoni elasticity dominated, by several
orders of magnitude, any surface viscosity effects.  Work
is underway to explore regimes where the elastic and
viscous terms are more comparable, and in these
viscoelastic regimes we hope to be able to estimate the
surface dilatational viscosity.
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